
DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

Designing Second-order IIR Filters for Cascade-
Implementation Digital Audio Applications

RUSTY ALLRED

Texas Instruments, Incorporated, Dallas, Texas USA

It is possible to implement IIR filters of any order by cascading first- and second-order IIR
sections. Today, as Digital Audio Processors that offer configurable cascades of second-
order sections are becoming commonplace in the market, the designer's challenge is to find a
way to design coefficients for these to accomplish the overall filtering goal. This paper brings
together the basic information needed to design and implement a wide variety of audio filters,
presents it in a manner accessible to the system designer, and includes numerous examples as
well as Matlab® implementations.

0 INTRODUCTION

Until recently, audio systems have largely been
analog. Now the trend is moving rapidly to digital
implementations. While the literature contains most
of the information needed to design and implement
digital filters, it might not be easily found in the most
useful forms. This paper gives the system designer a
concise tutorial containing enough information to
quickly get started with the design and
implementation of digital filters.

Digital filters are much more flexible than analog
filters since they do not depend upon the availability
of special components to implement the desired
mathematical function. Rather, digital second-order
filters have 5 degrees of freedom that can be
exploited to accomplish the desired filtering task.
Unfortunately, it is not always clear how to find the
coefficients to fully exploit this flexibility. As a partial
answer to that dilemma, this paper surveys many of
the common techniques and gives practical
implementation tips.

The coefficients designed in this paper are those
for the so-called Direct Form digital filters.

Although focusing on second-order filters, this
paper also discusses some first-order filters as well,
since some applications require them. Furthermore,

there is no problem implementing first-order filters
even in systems that offer only coefficient-
configurable second-order sections. As this paper
explains, the first-order filter can be implemented
individually in the second-order section, or
combined with another first-order filter to form a
second-order filter.

It is possible to design filters in the analog domain
and convert them for use in digital systems, and
these techniques are also discussed in this paper.
But it is also possible to design many filters directly
in the digital domain. Usually a direct approach, if
available, will be favored since it offers the designer
more direct control of the filter transfer function and,
often, ease of design.

1 NOMENCLATURE

For purposes of this paper the following
nomenclature is observed. The transfer function of
the second-order IIR filter is as shown in Eq. (1).

2
2

1
1

2
2

1
10

1
)(

−−

−−

++
++

=
zaza

zbzbb
zH (1)

For simplification, this is also expressed as

]1[

][

)(
)(

)(
21

210

aa

bbb

A
B

zA
zB

zH === (2)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 2

Note that the sample-domain equation for Eq. (1) is
as follows:

)2()1(

)2()1()()(

21

210

−−−−
−+−+=

nyanya

nxbnxbnxbny
(3)

where the relationship back to Eq. (1) is understood
by converting Eq. (3) back to z-transform notation
by observing the following rules:

1. Lower case x's and y's become upper case.

2. n's are substituted with z's.

3. Delays, n-Ä, become z-Ä.

4.
)(

)(
)(

zX

zY
zH = (4)

Making these substitutions, Eq. (3) becomes:

])[(

])()(1)[(

)()(

)()()()(

2
2

1
10

2
2

1
1

2
2

1
1

2
2

1
10

−−

−−

−−

−−

++

=++

−−

++=

zbzbbzX

zzYazzYazY

zzYazzYa

zzXbzzXbzXbzY

(5)

Which becomes Eq. (1) upon application of Eq. (4)
and some additional manipulation.

A common audio implementation of this filter is
shown in Fig. 1 [1].

Notice the negative signs in the figure. These
come directly out of Eq. (3). Obviously these can be
absorbed into the a coefficients, leading to another
standard version of Eq. (1), this time with the + signs
in the denominator substituted with - signs. For
purposes of this paper, the following convention is
used: when the coefficients are directly applicable to
Eq. (1), they will be written as shown in Eq. (2).
When the sign has been absorbed into the a
coefficients, the following nomenclature is used:

]1[

][

)(
)(

)(
21

210

aa

bbb

A
B

zA
zB

zH
−−

=
′

=
′

=′ (6)

z-1

z-1

z-1

z-1

b0

b1

b2

a1

a
2

Magnitude
Truncation--

Fig. 1 Direct Form I second-order IIR Filter

2 IMPLEMENTATION TIPS

3.1 Stability

Obviously, stability is a key issue in filter design,
and the criterion for digital filters is simple: the filter is
stable if its poles lie within the so-called unit circle.
Practically speaking it is sufficient to test the
coefficients (at implementation precision) to assure
that the roots of the denominator polynomial have
magnitudes lower than 1. For example, consider the
denominator polynomial

A = [1.0 -1.96297931671143 0.96365261077881]

or

2-1- 077881z0.96365261 671143z1.96297931- 1.0

 A(z)

+

=

Its roots, or the poles of the filter, are

0.98148965835571 ± 0.01818409523718i

which have magnitude 0.98165809260598 < 1, so
this filter is stable.

If the filter implementation in use uses A' instead
of A, that is, if the signs of the a1 and a2 coefficients
are reversed such that

A' = [1.0 1.96297931671143 -.96365261077881]

the signs must be re-reversed prior to finding the
roots. Due to the implementation, A' results in the
same stable filter as A, but would not be a stable
filter, with poles of

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 3

-2.36964475064116
 0.40666543392974

except in those implementations where the
numerator coefficient sign reversal is absorbed in the
coefficients, as discussed in Section 2.

3.2 Coefficient Quantization

For fixed point implementations, the filter
coefficients must be quantized to the appropriate
word size. For most filters these can be either
truncated or rounded. However, in the author's
experience, magnitude truncation, or truncation
toward 0, is the safest method in cases where the
available precision is only marginally sufficient. This
has not been the object of intense study, but, as a
practical matter, the author uses magnitude
truncation on coefficients, and tries other options if
the transfer function deviates significantly from the
desired result.

A fixed-point digital filter coefficient will have
some number of integer bits, i, and some number of
fraction bits, f. It is common to call this an i.f format,
where the point indicates the binary point. For
example, a 4.20 coefficient has 4 integer bits and 20
fraction bits, and a 5.23 coefficient has 5 integer bits
and 23 fraction bits.

Coefficient quantization can be accomplished in
the following way,

 CCC ff
Q 2)sgn(2 −= (7)

which is a fancy way of denoting an up shift of the
coefficient, C, by the number of fraction bits, f,
truncating toward 0, and then a down shift again by f
to produce the quantized coefficient CQ.

Notice that, since the number of bits available to
represent the coefficient is limited, it is also
necessary to saturate the coefficient to the maximum
and minimum values.

Since coefficients must, in general, take on
negative or positive values, the 4.20 or 5.23

coefficients of the example above will be two's
complement numbers. Therefore, the maximum
positive number will be 2i-1-2-f, while the maximum
negative coefficient will be -2i-1. This saturation is
accomplished in the following manner:

()()
Q

fii
QS CC ,22min,2max 11 −−− −−= (8)

For example, Table 1 shows some quantized and
saturated 4.20 coefficients, and Table 2 shows the
same coefficients for the 5.23 case:

Full Precision 4.20

25 7.99999904632568

9 7.99999904632568

5.3 5.29999923706055

2-20 9.5367431640625x10-7

2-23 0

-3.98 -3.97999954223633

-9 -8

-25 -8

Table 1. 4.20 Quantization

Full Precision 5.23

25 15.99999988079071

9 9

5.3 5.29999995231628

2-20 9.5367431640625x10-7

2-23 1.192092895507813x10-7

-3.98 -3.9799998998642

-9 -9

-25 -16

Table 2. 5.23 Quantization

3.3 Conversion to Hexadecimal

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 4

While conversion of decimal numbers to
hexadecimal is commonplace, and there exist tools
for accomplishing this task, converting i.f, twos-
complement numbers is a slightly different wrinkle,
that sometimes causes confusion.

The easiest way to accomplish this, and the way
that works for the standard filtering devices in the
marketplace, is as shown below:

()
()



 <+

=
+

Otherwise2dec2hex

022dec2hex

Q
f

Q
fi

Q
f

H C

CC
C (9)

This equation makes each coefficient the
hexadecimal equivalent non-negative integer that is
required for most standard dec2hex commands. In
the absence of a standard dec2hex command, the
non-negative integer arising from Eq. (8) can be
converted to hexadecimal by first converting to
binary, and then grouping the bits into groups of 4
and making a hexadecimal conversion.

By way of simple example, consider the value -
1.25 to be represented in 2.2 hexadecimal.
Quantizing according to Eq. (7) does not change the
value. Then, applying Eq. (9) results in the following:

11221.25- 42 =+⋅

The binary representation of 11 is 1011, which
results in the hex code B.

Had this been 1.25, Eq. (9) returns 521.25 2 =⋅ ,
which is 0101 in binary, and, of course, simply 5 in
hexadecimal.

For more realistic examples, consider -
3.97999954223633 from Table 1, and
5.29999995231628 from Table 2 above. Using Eq.
(8) for the former, a 4.20 value

72420 101.2603884x222236333.97999954- =+⋅
= 110000000101000111101100 in binary and

C051EC in hexadecimal.

Likewise, 5.29999995231628 for the 5.23 case
produces 0010101001100110011001100110 in
binary, and

2A66666 in hexadecimal.

4 FILTER DESIGN

The previous sections discussed various points
regarding the implementation of filters. Now, how
are those filters designed to begin with? That
question is addressed in this section.

There are numerous possible methods to design
digital filters. For example, analog filters can be
converted to digital using such methods as the
bilinear transform or the impulse invariant method
[2], [3], [4], [5]. While these techniques are useful
and do help to make the world of analog filters
readily applicable to digital filters, many digital filters
can also be designed directly. In fact, there is more
flexibility in this approach. In this section, some of
the most common filters for audio applications are
discussed.

4.1 Allpass Filters

Allpass filters can be designed directly in the
digital domain. Besides their use in phase
compensation, they are also building blocks from
which other filters can be derived [6], [7], [8], [9],
[10], [11], [12].

4.1.1 First Order
A first-order allpass is designed as follows:

1tan

1tan

+








−








=

s

c

s

c

F

f

F

f

π

π

α

(10)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 5

where fc is the critical frequency, Fs is the sample
rate and α is one of the coefficients of the final filter:

α

α

=
=
=

2

1

0

1

a

b

b

B = [b0 b1 0]

A = [1 a2 0] (11)

The a0 coefficient is always 1, by definition. Since
this is a first-order filter, the b2 and a2 coefficients
are zero if implementing in a second-order section.
Later in this paper the method of combining two
first-order filters for implementation in a single
second-order section is discussed.

Figs. 2 and 3 show respectively the phase
responses and group delays for 44.1 kHs sample
rate implementations of four first-order allpass filters
with critical frequencies of 0.1, 0.4, 1.6, and 6.4
kHz.

Appendix A gives Matlab® code for the
implementation of this filter, and the other discussed
within this paper. To make this code generically
useful as pseudo code, for any reader not familiar
with Matlab®, only general mathematical commands,
which can be found in most any math library or
computation tool, have been used rather than relying
upon Matlab's extensive libraries of filtering tools.

Note that the response curves in this paper are
for non-quantized filter coefficients. For some filters
the responses might deviate from those shown due
to coefficient quantization effects. In particular, for
higher sample rates, lower cut frequencies, and for
lower coefficients this will be more pronounced. For
a thorough discussion of quantizaton effects and
response distortions, please see [13] and [14].

Fig. 2 Phase Responses for First-order Allpass Filters

Fig. 3 Group Delays for First-order Allpass Filters

Table 3 shows the coefficients for the first of
these four filters first in unquantized decimal, then in
4.20 hexadecimal and in 5.23 hexadecimal with
reversed-sign denominator coefficients.

fc = 400 Hz Fs = 44.1 kHz

B Decimal -0.94457402736173 1.0 0.0

A Decimal (1.0) -0.94457402736173 0.0

B 4.20 Hex F0E307 100000 000000

A 4.20 Hex F0E307 000000

B 5.23 Hex F871833 0800000 0000000

A' 5.23 Hex 078E7CD 0000000

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 6

Table 3. Coefficients for First-order Allpass Filters

4.1.2 Second Order

A second-order allpass filter is designed as
follows:

1tan

1tan

+








−








=

s

s

F

b

F

b

π

π

α (12)

where b is the desired bandwidth.









−=

s

c

F

fπ
β

2
cos (13)

()

()
α

αβ

αβ
α

−=

−=
=

−=

−=

2

1

2

1

0

1

1

1

a

a

b

b

b

B = [b0 b1 b2]

A = [1 a1 a2] (14)

Figs. 4 and 5 respectively show phase responses
and group delays for 44.1 kHz sample rate
implementations of second order allpass filters with
the following parameters:

fc b

100 Hz 200 Hz

400 Hz 200 Hz

1600 Hz 400 Hz

6400 Hz 800 Hz

Table 4. Parameters used for Second-order Allpass
Filter Examples

Fig. 4. Phase Responses for Second-order Allpass
Filters

Fig. 5. Group Delays for Second-order Allpass Filters

fc = 6400 Hz b = 800 Hz Fs = 44.1 kHz

B Decimal 0.89205429 -1.158481541 1.0

A Decimal (1.0) -1.1584815 0.8920543

B 4.20 Hex 0E45DA ED76DD 100000

A 4.20 Hex ED76DD 0E45DA

B 5.23 Hex 0722ED5 F6BB6E1 0800000

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 7

A' 5.23 Hex 094491F F8DD12B

Table 5. Coefficients for Second-order Allpass
Filters

Table 5 shows the coefficients for the last of
these four filters first in unquantized decimal, then in
4.20 hexadecimal and in 5.23 hexadecimal with
reversed-sign denominator coefficients.

4.2 Parametric Equalization Filters

One of the most commonly encountered second-
order IIR filters is the bell-shaped parametric
equalization filter. Orfanidis offers a unique approach
with some beneficial features, along with Matlab®

code to implement it [15]. Other authors, [6], [7],
[12], [16], [17], [18] offer other approaches, such
as the one presented here, which is based upon an
allpass filter.



















+








−








<
+









−








=

Otherwise

1tan

1tan

1

tan

tan

s

s

s

s

F

b

F
b

g

g
F

b

g
F

b

π

π

π

π

α (15)

where b is the desired bandwidth, and g is the
desired (linear) gain.









−=

s

c

F

fπ
β

2
cos (16)

()
()

()

α

αα
αβ
α

−=
=

+−−=

−=

++=
−=

2

11

22

1

20

1

1

11

1

a

ba

b

b

b

gH

H

H

B = [b0 b1 b2] (17)

A = [1 a1 a2]

g b fc

2 (6 dB) 200 Hz 100 Hz

0.5 (-6 dB) 200 Hz 400 Hz

2.82 (9 dB) 400 Hz 1600 Hz

0.25 (-12 dB) 800 Hz 6400 Hz

Table 6. Parameters used for Second-order
Equalization Filter Examples (Note: Q = fc/b)

Fig. 6. Magnitude Responses for Second-order
Equalization Filters

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 8

Fig. 7. Phase Responses for Second-order
Equalization Filters

g = 2 b = 200 Hz fc = 100 Hz Fs = 96 kHz

B Decimal 1.006503 -1.986952 0.980492

A Decimal (1.0) -1.986952 0.986995

B 4.20 Hex 101AA2 E03572 0FB018

A 4.20 Hex E03572 0FCABB

B 5.23 Hex 080D513 F01AB8C 07D80C6

A' 5.23 Hex 0FE5474 F81AA27

Table 7. Coefficients for Second-order Equalizaton
Filters

4.3 Butterworth Filters

Butterworth filters, [2], [3], [4], [19], [20], [21],
are well-known and widely-used for high- and low-
pass filtering operations. Technically, Butterworth
filters are designed in the analog domain, and
converted for use in the digital domain. However,
these steps are combined into a simplified process
presented here. Matlab® and other tools have built-
in functions to design Butterworth filters, but the
Matlab® functions presented in the appendix of this
paper use only standard mathematical functions so
that they will be useful as pseudo code to guide the
implementation of these filters in any language.

4.3.1 First Order Low- and High-Pass
The denominator of a first-order analog Butterworth
filter is

frequency.cut desired theis f

,f2 is where

c

cπω
ω

c

cs +

For low-pass, the numerator is cω , and for high-

pass it is s :

c
H

c

c
L s

s
sH

s
sH

ωω
ω

+
=

+
=)(;)((18)

Converting to Digital
A digital filter can be created from analog
coefficients through the bilinear transform [2], [3],
[4]

()

frequency. sampling theis and

ftan

f2
 where

)()(

c

c

1

1

s

s

z

zk
s

F

F

k

sHzH








=

=
+
−=

π
π

(19)

In other words,

()

() 1

1

1

1

)(

)(

−

−

−

−

−++
−

=

−++
+

=

zkk

kzk
zH

zkk

z
zH

cc
H

cc

cc
L

ωω

ωω
ωω

In implementation the leading term of the
denominator must be equal to 1. Therefore, the
above equations must be normalized. The following
is the equation for a first-order digital Butterworth
low-pass filter:

c

c

c

c

c

c

k
k

a

k
b

k
b

ω
ω

ω
ω

ω
ω

+
−=

+
=

+
=

1

1

0

 B = [b0 b1 0] (20)

 A = [1 a1 0]

The numerator coefficients for the high-pass case
are as shown in Eq. (21); the denominator
coefficients are the same as those for the low-pass
case, in Eq. (20):

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 9

c

c

c

c

k
k

a

k
k

b

k
k

b

ω
ω

ω

ω

+
−

=

+
−=

+
=

1

1

0

B = [b0 b1 0] (21)

The magnitude and phase responses for first-
order Butterworth low-pass filters at cut-off
frequencies 100, 400, 1600, and 6400 Hz are
shown in Fig. 8 and 9. The coefficients for the 1600
Hz case are shown in Table 8.

The magnitude and phase responses for first-
order Butterworth high-pass filters at cut-off
frequencies 100, 400, 1600, and 6400 Hz are
shown in Fig. 10 and 11. The coefficients for the
100 Hz case are shown in Table 9.

 Fig. 8. Magnitude Responses for First-order
Butterworth Low-pass Filters

 Fig. 9. Phase Responses for First-order Butterworth
Low-pass Filters

fc = 1600 Hz Fs = 48 kHz

B Decimal 0.095107983 0.095107983 0

A Decimal (1.0) -0.809784033 0

B 4.20 Hex 01858F 01858F 000000

A 4.20 Hex F30B20 000000

B 5.23 Hex 00C2C7F 00C2C7F 0000000

A' 5.23 Hex 067A700 0000000

Table 8. Coefficients for First-order Butterworth
Low-pass Filters

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 10

 Fig. 10. Magnitude Responses for First-order
Butterworth High-pass Filters

 Fig. 11. Phase Responses for First-order
Butterworth High-pass Filters

fc = 100 Hz Fs = 48 kHz

B Decimal 0.993497481 -0.993497481 0

A Decimal (1.0) -0.986994963 0

B 4.20 Hex 0FE55D F01AA3 000000

A 4.20 Hex F03545 000000

B 5.23 Hex 07F2AEC F80D514 0000000

A' 5.23 Hex 07E55D9 0000000

Table 9. Coefficients for First-order Butterworth
High-pass Filters

4.3.2 Second Order Low- and High-Pass
The equations for second-order high- and low-

pass filters can be derived using the methodology
shown for the first-order case above. Here, only the
results are shown. The equations for the digital low-
pass filter coefficients are shown in Eq. (19).

cc

c

cc

c

cc

c

kk
b

kk
b

kk
b

ωω
ω

ωω
ω

ωω
ω

2

2

2

2

22

2

2

22

2

1

22

2

0

++
=

++
=

++
=

cc

cc

cc

c

kk

kk
a

kk

k
a

ωω
ωω

ωω
ω

2

2

2

22

22

22

2

22

22

1

++
−+

=

++
−

=

B = [b0 b1 b2]

A = [1 a1 a2] (22)
where k and ùc are defined as in the beginning of the
previous section.

The numerator coefficients for the high-pass case
are shown in Eq. (23); the denominator coefficients
are the same as for the low-pass case, in Eq. (22).

cc

cc

cc

kk

k
b

kk

k
b

kk

k
b

ωω

ωω

ωω

2

2

2

2

22

2

2

22

2

1

22

2

0

++
=

++
−

=

++
=

B = [b0 b1 b2] (23)

Figs. 12 and 13 show respectively the magnitude
and phase responses for second-order Butterworth

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 11

low-pass filters; Table 10 shows the coefficients for
the 400 Hz case at a sampling rate of 48 kHz.

The high-pass filter cases are shown in Figs. 14
and 15; Table 11 shows the coefficients for the 6.4
kHz case with a sampling frequency of 48 kHz.

Fig. 12. Magnitude Responses for Second-order
Butterworth Low-pass Filters

Fig. 13. Phase Responses for Second-order
Butterworth Low-pass Filters

fc = 400 Hz Fs = 48 kHz

B Decimal 0.000661 0.001322 0.000661

A Decimal (1.0) -1.925984 0.928627

B 4.20 Hex 0002B4 000569 0002B4

A 4.20 Hex E12F2C 0EDBA8

B 5.23 Hex 00015A7 0002B4E 00015A7

A' 5.23 Hex 0F686A4 F8922C0

Table 10. Coefficients for Second-order Butterworth
Low-pass Filters

Fig. 14. Magnitude Responses for Second-order
Butterworth High-pass Filters

Fig. 15. Phase Responses for Second-order
Butterworth Low-pass Filters

fc = 6400 Hz Fs = 48 kHz

B Decimal 0.547083 -1.094166 0.547083

A Decimal (1.0) -0.877271 0.311060

B 4.20 Hex 08C0D9 EE7E4D 08C0D9

A 4.20 Hex F1F6B4 04FA1A

B 5.23 Hex 04606CE F73F263 04606CE

A' 5.23 Hex 0704A67 FD82F2D

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 12

Table 11. Coefficients for Second-order
Butterworth High-pass Filters

4.3.3 Third Order Low- and High-Pass
The equations for third-order low- and high-pass

filters are shown in Eqs. (24) and (25) below. Note
that the denominator coefficients are the same for
either high-pass or low-pass, and are, therefore,
shown only in Eq. (24).

Figs. 16 through 19 are the magnitude and phase
plots for third-order Butterworth low- and high-pass
filters. Tables 12 and 13 show the decimal
coefficients. Implementation as second-order
sections will requiring factoring, which is discussed in
Section 5 of this paper.

2233

2233

3

2233

2233

2

2233

2233

1

2233

3

3

2233

3

2

2233

3

1

2233

3

0

22
2233

22
2233

22
2233

22

22
3

22
3

22

kkk
kkk

a

kkk
kkk

a

kkk
kkk

a

kkk
b

kkk
b

kkk
b

kkk
b

ccc

ccc

ccc

ccc

ccc

ccc

ccc

c

ccc

c

ccc

c

ccc

c

ωωω
ωωω

ωωω
ωωω

ωωω
ωωω

ωωω
ω

ωωω
ω

ωωω
ω

ωωω
ω

+−−
−+−

=

+++
−−+

=

+++
−+−

=

+++
=

+++
=

+++
=

+++
=

B = [b0 b1 b2 b3]

A = [1 a1 a2 a3] (24)
where k and ùc are defined as in the beginning of the
section on first-order Butterworth filters.

2233

3

3

2233

3

2

2233

3

1

2233

3

0

22

22
3

22
3

22

kkk

k
b

kkk
k

b

kkk
k

b

kkk

k
b

ccc

ccc

ccc

ccc

ωωω

ωωω

ωωω

ωωω

+++
−

=

+++
=

+++
−

=

+++
=

B = [b0 b1 b2 b3] (25)

Fig. 16. Magnitude Responses for Third-order
Butterworth Low-pass Filters

Fig. 17. Phase Responses for Third-order
Butterworth Low-pass Filters

fc = 1600 Hz Fs = 48 kHz

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 13

B Decimal 0.0009 0.0028 0.0028 0.0009

A Decimal (1.0) -2.5819 2.2467 -0.6573

Table 12. Coefficients for Third-order Butterworth
Low-pass Filters

Fig. 18. Magnitude Responses for Third-order
Butterworth High-pass Filters

Fig. 19. Phase Responses for Third-order
Butterworth High-pass Filters

fc = 100 Hz Fs = 48 kHz

B Decimal 0.987 -2.961 2.961 -0.987

A Decimal (1.0) -2.974 2.948 -0.975

Table 13. Coefficients for Third-order
Butterworth High-pass Filters

4.3.4 Fourth Order Low- and High-Pass
The equations for fourth-order low- and high-

pass filters are shown in Eqs. (26) and (27) below.

Note that the denominator coefficients, shown in Eq.
(26), are the same for both cases.

432234

4

4

432234

4

3

432234

4

2

432234

4

1

432234

4

0

4

6

4

cccc

c

cccc

c

cccc

c

cccc

c

cccc

c

kkkk
b

kkkk
b

kkkk
b

kkkk
b

kkkk
b

ωαωβωαω
ω

ωαωβωαω
ω

ωαωβωαω
ω

ωαωβωαω
ω

ωαωβωαω
ω

++++
=

++++
=

++++
=

++++
=

++++
=

432234

432234

4

432234

4334

3

432234

4224

2

432234

4334

1

4224

626

4224

cccc

cccc

cccc

ccc

cccc

cc

cccc

ccc

kkkk

kkkk
a

kkkk
kkk

a

kkkk
kk

a

kkkk
kkk

a

ωαωβωαω
ωαωβωαω

ωαωβωαω
ωαωαω

ωαωβωαω
ωβω

ωαωβωαω
ωαωαω

++++
+−+−

=

++++
+−+−

=

++++
+−

=

++++
++−−

=

() ()[]

() ()[]8
3

8

8
3

8

coscos212

,coscos2 where
ππ

ππ

β
α

+=

+=

B = [b0 b1 b2 b3 b4] (26)
A = [1 a1 a2 a3 a4]

432234

4

4

432234

4

3

432234

4

2

432234

4

1

432234

4

0

4

6

4

cccc

cccc

cccc

cccc

cccc

kkkk
k

b

kkkk

k
b

kkkk

k
b

kkkk

k
b

kkkk

k
b

ωαωβωαω

ωαωβωαω

ωαωβωαω

ωαωβωαω

ωαωβωαω

++++
=

++++
−

=

++++
=

++++
−

=

++++
=

B = [b0 b1 b2 b3 b4] (27)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 14

Fig. 20. Magnitude Responses for Fourth-order
Butterworth Low-pass Filters

Fig. 21. Phase Responses for Fourth-order
Butterworth Low-pass Filters

fc = 400 Hz Fs = 48 kHz

B Decimal x106 0.439 1.76 2.63 1.76 0.439

A Decimal (1) -3.86 5.60 -3.61 0.872

Table 14. Coefficients for Fourth-order Butterworth
Low-pass Filters

Fig. 22. Magnitude Responses for Fourth-order
Butterworth High-pass Filters

Fig. 23. Phase Responses for Fourth-order
Butterworth High-pass Filters

fc = 6400 Hz Fs = 48 kHz

B Decimal 0.322 -1.29 1.93 -1.29 0.322

A Decimal (1) -1.84 1.57 -0.636 0.104

Table 15. Coefficients for Fourth-order Butterworth
High-pass Filters

4.4 Linkwitz-Riley Filters

Although not so generally well-known as
Butterworth filters, Linkwitz-Riley high-pass and
low-pass filters are frequently used for crossovers,
and are, therefore, well-known at least in audio
circles [19]. Like Butterworth filters, Linkwitz-Riley

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 15

filters are designed in the analog domain, and
converted for use in the digital domain. However,
these steps are combined into a simplified process
presented here. Once again functions to implement
these filters in Matlab® are presented in the
appendix.

4.4.1 Second Order Low- and High-Pass
The equations for second-order low- and high-

pass filters are shown in Eqs. (28) and (29) below.
Since the denominator coefficients are the same for
both cases, they are shown only in Eq. (28).

cc

cc

cc

c

cc

c

cc

c

cc

c

kk

kk
a

kk

k
a

kk
b

kk
b

kk
b

ωω
ωω

ωω
ω

ωω
ω

ωω
ω

ωω
ω

2
2

2

22

2

2
2

2

22

22

2

22

22

1

22

2

2

22

2

1

22

2

0

++
−+

=

++
−

=

++
=

++
=

++
=

B = [b0 b1 b2]

A = [1 a1 a2] (28)

cc

cc

cc

kk

k
b

kk

k
b

kk

k
b

ωω

ωω

ωω

2

2

2

2

22

2

2

22

2

1

22

2

0

++
=

++
−

=

++
=

B = [b0 b1 b2] (29)

Figs. 24 and 25 show respectively the magnitude
and phase responses for second-order Linkwitz-

Riley low-pass filters; Table 16 shows the
coefficients for the 100 Hz case at a sampling rate of
192 kHz.

The high-pass filter cases are shown in Figs. 26
and 27; Table 17 shows the coefficients for the 200
Hz case with a sampling frequency of 192 kHz.

Fig. 24. Magnitude Responses for Second-order
Linkwitz-Riley Low-pass Filters

Fig. 25. Phase Responses for Second-order
Linkwitz-Riley Low-pass Filters

fc = 100 Hz Fs = 192 kHz

B Decimal x106 2.668566 5.337133 2.668566

A Decimal (1.0) -1.9934657 0.9934764

B 4.20 Hex 000002 000005 000002

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 16

A 4.20 Hex E01AC4 0FE547

B 5.23 Hex 0000016 000002C 0000016

A' 5.23 Hex 0FF29E2 F80D5C5

Table 16. Coefficients for Second-order Linkwitz-
Riley Low-pass Filters

Fig. 26. Magnitude Responses for Second-order
Linkwitz-Riley High-pass Filters

Fig. 27. Phase Responses for Second-order
Linkwitz-Riley High-pass Filters

fc = 400 Hz Fs = 192 kHz

B Decimal 0.987037 -1.974074 0.987037

A Decimal (1.0) -1.9739899 0.9741591

B 4.20 Hex 0FCAE7 E06A31 0FCAE7

A 4.20 Hex E06A8A 0F9627

B 5.23 Hex 07E573C F035187 07E573C

A' 5.23 Hex 0FCABB3 F834EC2

Table 17. Coefficients for Second-order Linkwitz-
Riley High-pass Filters

4.4.1 Fourth Order Low- and High-Pass
The equations for fourth-order low- and high-

pass filters are shown in Eqs. (30) and (31) below.
Since the denominator coefficients are the same for
both cases, they are shown only in Eq. (30).

432234

4

4

432234

4

3

432234

4

2

432234

4

1

432234

4

0

22422

22422

4

22422

6

22422

4

22422

kkkk
b

kkkk
b

kkkk
b

kkkk
b

kkkk
b

cccc

c

cccc

c

cccc

c

cccc

c

cccc

c

++++
=

++++
=

++++
=

++++
=

++++
=

ωωωω
ω

ωωωω
ω

ωωωω
ω

ωωωω
ω

ωωωω
ω

432234

432234

4

432234

4334

3

432234

4224

2

432234

4334

1

22422

22422

22422

424244

22422

686

22422

424244

kkkk

kkkk
a

kkkk

kkk
a

kkkk

kk
a

kkkk

kkk
a

cccc

cccc

cccc

ccc

cccc

cc

cccc

ccc

++++
+−+−

=

++++
−+−

=

++++
−−

=

++++
−−+

=

ωωωω
ωωωω

ωωωω
ωωω

ωωωω
ωω

ωωωω
ωωω

(30)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 17

432234

4

4

432234

4

3

432234

4

2

432234

4

1

432234

4

0

22422

22422

4

22422

6

22422

4

22422

kkkk

k
b

kkkk

k
b

kkkk

k
b

kkkk

k
b

kkkk

k
b

cccc

cccc

cccc

cccc

cccc

++++
=

++++
−

=

++++
=

++++
−

=

++++
=

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

(31)

Figs. 28 and 29 show respectively the magnitude
and phase responses for fourth-order Linkwitz-Riley
low-pass filters; Table 18 shows the coefficients for
the 1600 Hz case at a sampling rate of 192 kHz.

The high-pass filter cases are shown in Figs. 30
and 31; Table 19 shows the coefficients for the
6400 Hz case with a sampling frequency of 192
kHz.

Fig. 28. Magnitude Responses for Fourth-order
Linkwitz-Riley Low-pass Filters

Fig. 29. Phase Responses for Fourth-order
Linkwitz-Riley Low-pass Filters

fc = 1600 Hz Fs = 192 kHz

B Decimal x106 0.437 1.75 2.62 1.75 0.437

A Decimal (1.0) -3.85 5.57 -3.58 0.862

Table 18. Coefficients for Fourth-order Linkwitz-
Riley Low-pass Filters

Fig. 30. Magnitude Responses for Fourth-order
Linkwitz-Riley High-pass Filters

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 18

Fig. 31. Phase Responses for Fourth-order
Linkwitz-Riley High-pass Filters

fc = 6400 Hz Fs = 192 kHz

B Decimal 0.744 -2.97 4.46 -2.97 0.744

A Decimal (1.0) -3.41 4.39 -2.54 0.553

Table 19. Coefficients for Fourth-order Linkwitz-
Riley High-pass Filters

4.5 Bass and Treble Shelf Filters

Often used in tone control applications, bass and
treble shelf filters are an important class of audio
filters. Here both first [6] and second [22] order
designs are discussed. Once again functions to
implement these filters in Matlab® are presented in
the appendix.

4.5.1 First Order Bass and Treble Shelves
The equations for first-order bass and treble shelf

filters are shown in Eq. (32) below.

()()

()()

()()

()()

1% else
2

11
2

11
1

treble% else
2

11
2

11
1

bass if

1tan

1tan

1 if

1

0

1

0

≤

−−
+=

−−
+=

−+
+=

−+
+=

+








−








=

>

g

ga
ab

ga
b

ga
ab

ga
b

F

f

F

f

a

g

s

c

s

c

π

π

()()

()()
2

11
2

11
1

tan

tan

bass if

1

0

−+
+=

−+
+=

+








−








=

ga
ab

ga
b

g
F

f

g
F

f

a

s

c

s

c

π

π

()()

()()
2

11
2

11
1

1tan

1tan

treble% else

1

0

−−
+=

−−
+=

+







⋅

−







⋅

=

ga
ab

ga
b

F

f
g

F

f
g

a

s

c

s

c

π

π

B = [b0 b1 0]

A = [1 a1 0] (32)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 19

Figs. 32 and 33 show respectively the magnitude
and phase responses for boost and cut first-order
shelf filters, with corners at 100 Hz and 1600 Hz;
Table 20 shows the coefficients for the 100 Hz
boost case at a sampling rate of 32 kHz.

Fig. 32. Magnitude Responses for First-order
Shelf Filters

Fig. 33. Phase Responses for First-order Shelf
Filters

fc = 100 Hz Fs = 32 kHz g=1.995 (6 dB)

B Decimal 1.0096763 -0.9708790 0.0

A Decimal (1.0) -0.9805553 0.0

B 4.20 Hex 1027A2 F07748 000000

A 4.20 Hex F04FA6 000000

B 5.23 Hex 0813D12 F83BA3D 0000000

A' 5.23 Hex 07D82D6 0000000

Table 20. Coefficients for First-order Bass Shelf
Filters

4.5.1 Second Order Bass and Treble
Shelves

The equations for second-order bass and treble
shelf filters are shown in Eq. (33) below.

end

2

else
2

1 elseif

2&5.0 if

gF

g
F

g

gF

gg

=

=

>

=

≤≥

πφπρσ

π

s

c

s

c

dn

d

F

f

F

f
a

ggg

Fg

F
g

===



















−=

=

−

−
=

;
2

;
2
2

4
1

tan

1
4 22

2

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 20

222222

222222

2

222222

22222

1

222222

222222

0

22221

22221

22221

222442

22221

22221

bass if

aggaagagga

aggaagagga

b

aggaagagga

aggaaga

b

aggaagagga

aggaagagga

b

ddddd

nnnnn

ddddd

nnn

ddddd

nnnnn

++++−+−
+++++−−

=

++++−+−

−−+−−

−=

++++−+−
−−−+−−+−

−=

σσ
σσ

σσ

σσ
σσ

222222

222222

2

222222

22222

1

22221

22221

22221

222442

aggaagagga

aggaagagga

a

aggaagagga

aggaaga

a

ddddd

ddddd

ddddd

ddd

++++−+−
+++++−−

=
++++−+−

++−++−

=

σσ
σσ

σσ

222222

222222

2

222222

22222

1

222222

222222

0

22221

22221

22221

222442

22221

22221

else

aggaagagga

aggaagagga

b

aggaagagga

aggaaga

b

aggaagagga

aggaagagga

b

ddddd

nnnnn

ddddd

nnn

ddddd

nnnnn

+++−−++

++++−−+

=

+++−−++

−−+++

=

+++−−++

+++−−++

=

σσ
σσ

σσ

σσ
σσ

222222

222222

2

222222

22222

1

22221

22221

22221

222442

aggaagagga

aggaagagga

a

aggaagagga

aggaaga

a

ddddd

ddddd

ddddd

ddd

+++−−++
++++−−+

=
+++−−++

−−+++

=

σσ
σσ

σσ

B = [b0 b1 b2]
A = [1 a1 a2] (33)

Figs. 34 and 35 show the magnitude and phase
responses for boost and cut first-order shelf filters,
with corners at 100 Hz and 1600 Hz; Table 20
shows the coefficients for the 100 Hz boost case at
a sampling rate of 32 kHz.

Fig. 34. Magnitude Responses for Second-order
Shelf Filters

Fig. 35. Phase Responses for Second-order Shelf
Filters

fc = 1600 Hz Fs = 32 kHz g=0.355 (-9 dB)

B Decimal 0.39051 -0.59723 0.24239

A Decimal (1.0) -1.71565 0.75132

B 4.20 Hex 063F8C F671C4 03E0CF

A 4.20 Hex E48CB8 0C0568

B 5.23 Hex 031FC62 FB38E1E 01F067D

A' 5.23 Hex 0DB9A45 F9FD4BE

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 21

Table 21. Coefficients for Second-order Treble
Shelf Cut Filter

5 IMPLEMENTING FILTERS OF OTHER
ORDERS

Using second-order IIR structures, IIR filters of
any order, up to and including 2 times the number of
second-order filters available, can be implemented.
In this section the method of implementing other-
than-second-order filters is described.

5.1 Implementing First-order Filters
First-order filters are not only important in their

own right, but they are an essential part of
implementing filters of higher, odd orders. A first-
order filter can be implemented in the second-order
structure by simply downloading zero for the values
of b2 and a2. However, if more than one first-order
filter is to be implemented, two of them can be
implemented together in a single second-order
structure. This is done by multiplying the coefficients
in the following fashion:

First-order Filter 1: [b10, b11], [1, a11]
First-order Filter 2: [b20, b21], [1, a21]
Resulting second-order Filter:

[b10 b20, b10 b21 + b20 b11, b11 b21]
[1, a10 a21 + a20 a11, a11 a21] (34)

5.1.1 First-order Filter Example
Let filter 1 be a first-order Butterworth high-pass

filter at 100 Hz, to be implemented at a sample rate
of 48 kHz. The response of this filter is shown in
Fig. 36.

Fig. 36. Filter 1

For Filter 1,
B = [0.99349748134078 -0.99349748134078],
A = [1.00000000000000 -0.98699496268155]
To implement this filter alone in a second-order
section, the following coefficients should be
downloaded:
B = [0.99349748134078 -0.99349748134078 0],
A = [1.00000000000000 -0.98699496268155 0]

Now let Filter 2 be a 5 dB, first-order bass shelf
at 500 Hz as shown in Fig. 37.

Fig. 37. Filter 2

For Filter 2,
B = [1.02467059808085 -0.91193160991121],
A = [1.00000000000000 -0.93660220799206]

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 22

To implement this filter alone in a second-order
section the following should be downloaded:
B = [1.02467059808085 -0.91193160991121 0],
A = [1.00000000000000 -0.93660220799206 0]

Now, if these two filters are to be combined and
implemented as a single second-order filter, the
coefficients, as derived by Eq. (31) will be as
follows:
B=[1.01800765839728 -1.92400941599910 0.90600175760182]
A=[1.0000000000000 -1.92359717067361 0.92442166132458]

Whether implemented separately in two second-
order sections, or jointly in one, the composite filter
response will be that shown in Fig. 38.

Fig. 38. Composite Filter

5.2 Implementing Higher-order Filters
The procedure for implementing filters of higher

orders as cascades of second-order filter sections is
discussed in this section.

Consider an nth-order filter as shown in Eq. (35):

n
n

n
n

zazaza

zbzbzbb
zH

−−−

−−−

++++
++++

=
L

L
2

2
1

2
2

1
10

1
)(

(35)

This equation can be factored and written in the
following form:

))((

))((

))((

))((

))((

))((

)(

2222

2222

1111

1111

0

iPPziPPz

iZZziZZz

iPPziPPz

iZZziZZz

iPPziPPz

iZZziZZz

bzH

nInRnInR

nInRnInR

IRIR

IRIR

IRIR

IRIR

+−−−
+−−−

⋅
+−−−
+−−−

⋅
+−−−
+−−−

⋅=

L

L
(36)

Where Z and P represent Zeros and Poles and
where R and I represent their Real and Imaginary
parts. In addition, b0 is the first numerator coefficient
of the original equation. This contains scaling
information that is lost when factoring.

As shown in Eq. (36), all of the complex poles
and zeroes will appear in complex conjugate pairs.
For filters of odd order, at least one real pole and
one real zero will remain. In some cases there might
also be other real poles or real zeros. The real poles
and zeros can be implemented as described in the
section above discussing first-order filters. That is, if
there is more than one real pole and one real zero,
they can be combined. Otherwise, the single, real,
first-order filter is implemented using a second-order
section.

After dealing with the real poles and zeros, the
remaining complex conjugate pairs can then be
combined into second-order sections with real
coefficients as shown in Eq. (37):

2
1

2
11

2

*
11

*
11

2

*
11

1111

2

)(

))((

))((

IRR

IRIR

ZZzZz

ZZzZZz

ZzZz

iZZziZZz

++−=

++−=

−−=

+−−−

(37)

Now, by combining a pair of complex zeroes
with a pair of complex poles, and dividing through
by z2, a filter in the form of Eq. (1) appears. The
following is general advice for creating the best filter
implementations:
1. Usually the greatest success is achieved when

the second-order sections each appear to be a

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 23

viable filter in its own right; massive boosts or
other scaling disparities between filters can lead
to numerical problems. In general, if the poles
and zeros are ordered according to magnitude,
and greatest-magnitude poles are paired with
greatest-magnitude zeroes, the resulting filters
will be well-behaved.

2. Notice the b0 in Eq. (36), the b0 coefficient from
the original, higher-order filter. This scale factor
from the original filter is lost in the factoring
process and must be re-applied. Since this
discussion is specific to cascade filter
implementations, this scale factor needs to be
applied to only 1 of the resulting filters. If the
scale factor is less than one it should be applied
to the filter with the greatest magnitude (or
largest numerator coefficients). Otherwise, it can
be applied to a smaller filter. Sometimes it might
make the most sense to distribute the scale
factor across multiple filters. For example, when
factoring a fourth-order filter, it might make
sense to scale both resulting second-order
sections by the square root of b0.

3. As with any filter implementation, care should be
taken to see that there is adequate headroom for
each of the filters being implemented. If one filter
provides a cut that compensates another filter's
boost, placing the cut first in the chain will help
prevent clipping between filters. Artificially
scaling the numerators, and using subsequent
filters or other system gains to compensate for
the scaling can also help assure adequate
headroom.

5.2.1 Higher-order Filter Example
In this example a 500 Hz, fourth-order

Butterworth high-pass filter is designed for a 44.1
kHz sampling rate:
B = [0.91110246841372 -3.64440987365487
5.46661481048230 -3.64440987365487 0.91110246841372]

A = [1.00000000000000 -3.81386538359704
5.45872379150560 -3.47494261156512 0.83010770795173]

When the poles and zeros are computed, two
real zeros are found, and all poles are complex:
Zeros:
 1.00022566526664
 0.99977439304055
 0.99999997084641 - 0.00022563610571i
 0.99999997084641 + 0.00022563610571i
Poles:
 0.97101464699516 + 0.06401591243324i
 0.97101464699516 - 0.06401591243324i
 0.93591804480336 + 0.02555784867173i
 0.93591804480336 - 0.02555784867173i

Taking care to assure that the real zeros are
handled as a pair, in order to allow all complex roots
to be handled in complex conjugate pairs, Eq. (37)
is applied to derive two sets of second-order
equations. The coefficients of these are shown
below:
B1 = [0.9545168769664 -1.9090336982776 0.9545168699073]
A1 = [1.000000000000 -1.8718360896067 0.8765957902173]
B2 = [0.9545168769664 -1.909033809588 0.9545168840256]
A2 = [1.000000000000 -1.9420292939903 0.9469674817238]

Notice that the b0 coefficients are equal in these
two sets of coefficients. This is because each of the
derived numerator polynomials was multiplied
though by the square root of the b0 coefficient of the
original equation.

Fig. 39 shows the two second-order filters in
dotted and dashed lines, and the fourth-order filter
resulting from cascading them, in other words, the
original fourth-order filter, as a solid line.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 24

Fig. 39. Factored and reconstructed fourth-order
Butterworth filter

5.3 Converting Filters from Other
Structures for Second-order Cascade
Implementation

Although it is possible to generate any desired
filter function using a cascade structure, sometimes
the designer will be called upon to convert filters that
have already been designed for a parallel or
combination cascade-parallel structure to be
implemented fully in a cascade structure. The
process for doing this is described in this section.

First, consider the filter structure shown in Fig.
40.

Fig. 40. Cascade-Parallel Filter Structure

This structure has an overall transfer function,
from input to output, of

() () () ()[]zHzHzHzH 4321 +
(38)
To implement this transfer function in a cascade

structure, this overall transfer function is computed,

then factored into second-order sections and
implemented.

5.3.1 Structure Conversion Example
Suppose that the structure of Fig. 40 is populated

with the following transfer functions:

H1(z) is a first-order Butterworth highpass filter
with a cutoff frequency of 80 Hz. This filter has the
following coefficients:

B = [0.99479123765938 -0.99479123765938]

A = [1.00000000000000 -0.98958247531875]

H2(z) is a second-order Butterworth highpass
filter with a cutoff frequency of 300 Hz. It has the
coefficients shown :

B=[0.97261389849984 -1.94522779699969 0.97261389849984]

A=[1.0000000000000 -1.94447765776709 0.94597793623228]

H3(z) is a second-order Butterworth lowpass
filter with a cutoff frequency of 3 kHz. Its
coefficients are as shown:

B=[0.02995458220809 0.05990916441618 0.02995458220809]

A=[1.0000000000000 -1.45424358625159 0.57406191508395]

H4(z) is a first-order Butterworth lowpass filter
with a cutoff frequency of 5 kHz. It has the
coefficients shown:

B=[0.25342728698435 0.25342728698435]

A=[1.00000000000000 -0.49314542603130]

The magnitude responses of these four filters are
shown in Fig. 41, and the resulting composite filter is
shown in Fig. 42.H1(z)

H4(z)

H3(z)H2(z)

+

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 25

Fig. 41. Original Filters One Through Four

Fig. 42. Composite Magnitude Response

All of these bundled together form the sixth-order
filter whose transfer function is shown in Eq. (38).
To convert this to a cascade structure, first the
transfer function as a simplified ratio of polynomials
is sought. This process can be much simplified by
use of a symbolic manipulation program such as
Maple®.

Plugging in the general formulae for first- and
second-order filters, Eq. (38) becomes



























+
+

+
++

++

⋅
++

++

⋅
+
+

−

−

−−

−−

−−

−−

−

−

1
41

1
4140

2
32

1
31

2
32

1
3130

2
22

1
21

2
22

1
2120

1
11

1
1110

1

1

1

1

zA

zBB

zAzA

zBzBB

zAzA

zBzBB

zA

zBB
(39)

How to proceed from here differs somewhat due
to available tools, personal preferences, and desired
generality of the solution. Obviously, the coefficients
could be substituted and Eq. (39) simplified. Or,
especially if using a symbolic tool, this equation can
be simplified symbolically. This has the advantage
that the algebra does not have to be repeated every
time one of the original filters changes.

It is also worthwhile to notice that, if the orders
of the four filters will sometimes change, Eq. (39)
can be written with the highest possible orders,
simplified symbolically, and then when deriving the
final equation, substituting zeros for any unused
higher-order coefficients.

In addition, take note that H1 is already in
cascade form and can be implemented as such.
Therefore, the combination of H2 through H4 can be
simplified and reduced to two second-order sections
and one first-order section. These four total sections
(including H1) can then be implemented using four
second-order structures, or the two first-order
sections can be combined at that time for a three-
section implementation. Additionally, the entire
equation can be reduced to one simplified ratio of
polynomials, and then factored.

For purposes of this example, it is assumed that
filters will not change, so the coefficients can be
substituted into Eq. 39 and the resulting equation
simplified. The resulting sixth-order equation has this
form

()
6

6
1

1

6
6

1
10

1 −−

−−

+++
+++

=
zaza

zbzbb
zH

L

L
(40)

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 26

The coefficients are

B=[0.28108973410751 -0.90011731939953
0.80032820573604 0.31515805072053 -0.95880370670137
0.58495926867901 -0.12261423314218]

A=[1.00000000000000 -4.88144914536874
9.87517090253539 -10.59711698022950 6.35966205774405 -
2.02127862265964 0.26501273714634]

If a sixth-order structure is available, this filter
can be implemented as is to achieve the same
transfer function as if implemented by the structure
of Fig. 40.

To implement this in a cascade of second-order
filters, however, the process described in section 5.2
is used: the numerator polynomials are factored,
complex conjugate pole and zero pairs are
combined into second-order filter coefficients, and
any real poles and zeros may also be combined.
This example has the following zeros:

-1.00000000000000

 0.99999999999696

 0.98594396121424 + 0.02327116735616i

 0.98594396121424 - 0.02327116735616i

 0.61517698021458 + 0.26465822467728i

 0.61517698021458 - 0.26465822467728I

The poles are shown below:

 0.98958247534274

 0.49314542603125

 0.97223882887180 + 0.02701103189409i

 0.97223882887180 - 0.02701103189409i

 0.72712179312558 + 0.21296904245800i

 0.72712179312558 - 0.21296904245800I

Combining these poles and zeros, in the order
shown, and scaling the numerator of the first filter
with the b0 coefficient of the the sixth-order filter
(0.28108973410751 for this example), the
following filter coefficients result:

B=[0.28108973410751 0.00000000000085 -0.28108973410666]

A=[1.0000000000000 -1.48272790137399 0.48800807139595]

B=[1.00000000000000 -1.97188792242849 0.97262704188495]

A=[1.0000000000000 -1.94447765774359 0.94597793620998]

B=[1.00000000000000 -1.23035396042916 0.44848669287526]

A=[1.0000000000000 -1.45424358625116 0.57406191508364]

The magnitude responses of these three filters are
shown in Fig. 43. The composite magnitude
response achieved upon cascading these three filters
is identically that of Fig. 42.

Fig. 43. Magnitude Responses of the Three Cascade
Filters

6 PLOTTING THE MAGNITUDE
RESPONSE OF SECOND-ORDER IIR
FILTERS

A second-order digital filter has the transfer
function shown in Eq. (1). The magnitude response,
as a function of frequency, admits the following
functional form:

ωω

ω

ωω 2
21

2
210

1
)()(

ii

iiw

ez eaea

ebebb
zHH i −−

−−

= ++
++

== (41)

where ù = 2ðf/Fs, Fs = sampling frequency.
Typically the magnitude response will be plotted

on a log-frequency axis, so only a few hundred
frequency points need to be computed. The log
spacing can be computed as follows:

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 27

1

)(log)(log 110210

10 −

−

= N

FF

M (42)
Where F1 is the beginning frequency point; F2 is the
ending frequency point, and N is the desired number
of frequency points.

For example, to plot 300 points between 10 Hz
and 22050 Hz, a multiplier of

026082.110 299

)10(log)22050(log 1010

==
−

M

is used resulting in frequency values of 10,
10.26082, 10.52844, 10.80304, 11.0848,
11.37391, …, 19892.1, 20410.93, 20943.28,
21489.52, 22050.

Now, all that remains is to compute the
frequency values. Typically, these are plotted in dB,
so the computation for the first point, assuming a
sample rate of 44.1 kHz is as follows:

44100
104

44100
102

44100
104

44100
102

21

210
10

10

1
log20

)
44100

102
(log20

ππ

ππ

π

ii

ii

eaea

ebebb

H

−−

−−

++

++

=

(43)

Using a math library that can deal with complex
exponentials, substitute the coefficients into Eq. (43),
compute the response for each of the frequency
points, and plot. If complex exponentials are not
available, the equation can be rewritten as follows.
This should be computable using most math libraries:

[] []
[] [])2sin()2cos()sin()cos(1

)2sin()2cos()sin()cos(

(44)
1

)(

21

210

2
21

2
210

ωωωω
ωωωω

ω
ωω

ω

iaia

ibibb

eaea

ebebb
H

ii

iiw

−+−+
−+−+

=
++
++

=
−−

−−

Note: if necessary the following definition can be
used after substituting in the various parameters and
simplifying:

22

22

δγ
βα

δγ
βα

+
+

=
+
+

i
i

(45)

Although Matlab® has a resident tool, the
FREQZ command, for deriving this information, this
paper includes a Matlab® function written so as to
not require that command. This function can be used
as pseudocode for implementations in languages
where filtering tools are not available. By way of
testing its functionality, it can be used to plot any of
the second-order filters presented in this paper.

7 SUMMARY

This paper is meant as a companion to the digital
audio systems designer. It covers the information
needed to design and implement any IIR filter as a
cascade of second-order IIR filter sections. It
presents the equations needed to compute many
filters, and presents them in a straightforward format,
using familiar parameters, and without requiring
transformations to derive the actual coefficients for
implementation.

8 ACKNOWLEDGEMENT

The author is grateful to the McDonald's and
Jack-in-the-Box restaurants near his home in Plano,
Texas for making their facilities available during the
preparation of this paper.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 28

9 REFERENCES

[1] P. H. Bauer and L.-J. Leclerc, "A Computer-
aided Test for the Absence of Limit Cycles in
Fixed-point Digital Filters," IEEE Trans.
Signal Proc., vol. 39, (1991 Nov.).

[2] E. C. Ifeachor and B. W. Jervis, Digital Signal
Processing: A Practical Approach, (Addison-
Wesley, 1993).

[3] A. V. Oppenheim and R. W. Schafer, Digital
Signal Processing, (Prentice-Hall, 1975).

[4] J. G. Proakis and D. G. Manolakis,
Introduction to Digital Signal Processing,
(Macmillan, 1988).

[5] Y. Hirata, “Digitalization of Conventional Analog
Filters for Recording Use”. J. Audio Eng. Soc.,
vol. 29, pp. 333-337, (1981).

[6] P. A. Regalia and S. K. Mitra, “Tuneable Digital
Frequency Response Equalization Filters”.
IEEE Tran. Acoust., Speech, and Signal
Proc., vol. 35, pp. 118-120, (1987 Jan.)

[7] U. Zolzer and T. Boltze, “Parametric Digital
Filter Structures”. 99th Convention Audio
Engineering Society, (1995 Oct.).

[8] P. A. Regalia et al., "The Digital Allpass Filter: a
Versatile Signal Processing Building Block,"
Proc. IEEE, vol. 76, pp. 19-37, (1988 Jan.).

[9] A. N. Willson, Jr. and H. Orchard, "Insights into
Digital Filters Made as the Sum of Two Allpass
Functions," IEEE Trans. Circuits Sys., vol. 42,
pp. 129-137, (1995 Mar.).

[10] L. Gazsi, "Explicit Formulas for Lattice Wave
Digital Filters," IEEE Trans. Circuits Sys., vol.
32, pp. 68-88, (1985).

[11] R. Ansari and B. Liu, "A Class of Low-Noise
Computationally Efficient Recursive Digital
Filters with Applications to Sampling Rate
Alterations," IEEE Trans. Acoust., Speech,
Signal Proc., vol. 33, pp. 90-97, (1985 Feb.).

[12] R. Bristow-Johnson, "The Equivalence of
Various Methods of Computing Biquad
Coefficients for Audio Parametric Equalizers,"

97th Convention Audio Engineering Society,
(1994 Nov.), preprint 3906.

[13] D. Zaucha “Importance of Precision on
Performance for Digital Audio Filters”. 112th

Convention Audio Engineering Society.
Munich, (2002 May).

[14] R. J. Clark et al., “Techniques for Generating
Digital Equalizer Coefficients,” J. Audio Eng.
Soc., vol. 48, pp. 281-298, (2000).

[15] S. J. Orfanidis "Digital Parametric Equalizer
Design with Prescribed Nyquist-Frequency
Gain," 101st Convention Audio Engineering
Society, (1996 Nov.), preprint 4361.

[16] J. McNally, Digital Audio: Recursive
Digital Filtering for High Quality Audio
Signals. BBC Research Department Report,
1981/10, (1981).

[17] S. A. White, "Design of a Digital Biquadratic
Peaking or Notch Filter for Digital Audio
Equalization," J. Audio Eng. Soc., vol. 34, pp.
479-, (1986).

[18] D. J. Shpak, "Analytical Design of
Biquadradic Filter Sections for Parametric
Filters," J. Audio Eng. Soc., vol. 40, pp. 876-
885, (1992 Nov.).

[19] S. P. Lipshitz and J. Vanderkooy, “A Family
of Linear-Phase Crossover Networks of High
Slope Derived by Time Delay”. J. Audio Eng.
Soc., vol. 31, pp. 374-392, (1983).

[20] T. W. Parks and C. S. Burrus, Digital Filter
Design, (Wiley, 1987).

[21] R. W. Hamming, Digital Filters, (Prentice-
Hall, 1977).

[22] J. A. Moorer, “The Manifold Joys of
Conformal Mapping”. J. Audio Eng. Soc., vol.
31, pp. 826-841, (1983).

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 29

APPENDIX - MATLAB® FUNCTIONS
(Electronic versions (*.m files) available from the
author.)

First-Order Allpass Filters
function [B, A] = FO_allpass(fc, Fs)
alpha = (tan(pi*fc/Fs) - 1) /
(tan(pi*fc/Fs) + 1);
B = [alpha 1 0];
A = [1 alpha 0];

Second-Order Allpass Filters
function [B, A] = SO_allpass(b, fc, Fs)
a = (tan(pi*b/Fs) - 1) / (tan(pi*b/Fs)
+ 1);
d = -cos(2*pi*fc/Fs);
B = [-a d*(1 - a) 1];
A = [1 d*(1 - a) -a];

Second-Order Equalization Filters
function [B, A] = SO_EQ(g, b, fc, Fs)
if g < 1
 a = (tan(pi*b/Fs)-
g)/(tan(pi*b/Fs)+g);
else
 a = (tan(pi*b/Fs)-
1)/(tan(pi*b/Fs)+1);
end
H = g - 1;
d = -cos(2*pi*fc/Fs);
b0 = 1 + (1+a)*H/2;
b1 = d*(1-a);
a1 = b1;
b2 = -a-(1+a)*H/2;
a2 = -a;

B = [b0 b1 b2];
A = [1 a1 a2];

First-Order Butterworth Filters
function [B, A] = fo_butter(fc, Fs, HL)

wc = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

 b0 = wc/(k+wc);

 b1 = wc/(k+wc);

else

 b0 = k/(k+wc);

 b1 = -k/(k+wc);

end

a1 = (wc-k)/(k+wc);

B = [b0 b1 0]

A = [1 a1 0]

Second-Order Butterworth Filters
function [B, A] = so_butter(fc, Fs, HL)

wc = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

 b0 = wc^2/(wc^2+k^2+sqrt(2)*wc*k);

 b1 = 2*wc^2/(wc^2+k^2+sqrt(2)*wc*k);

 b2 = wc^2/(wc^2+k^2+sqrt(2)*wc*k);

else

 b0 = k^2/(wc^2+k^2+sqrt(2)*wc*k);

 b1 = -2*k^2/(wc^2+k^2+sqrt(2)*wc*k);

 b2 = k^2/(wc^2+k^2+sqrt(2)*wc*k);

end

a1 = (2*wc^2-
2*k^2)/(wc^2+k^2+sqrt(2)*wc*k);

a2 = (wc^2+k^2-
sqrt(2)*wc*k)/(wc^2+k^2+sqrt(2)*wc*k);

B = [b0 b1 b2];

A = [1 a1 a2];

Third-Order Butterworth Filters
function [B, A] = to_butter(fc, Fs, HL)

wc = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

b0=wc^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

b1=3*wc^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

b2=3*wc^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 30

b3=wc^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

else

b0=k^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

b1=-3*k^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

b2=3*k^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

b3=-k^3/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

end

a1=(3*wc^3-3*k^3+2*wc^2*k-2*wc*k^2)
/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

a2=(3*wc^3+3*k^3-2*wc^2*k-2*wc*k^2)
/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

a3=(wc^3-k^3-2*wc^2*k+2*wc*k^2)
/(wc^3+k^3+2*wc^2*k+2*wc*k^2);

B = [b0 b1 b2 b3];
A = [1 a1 a2 a3];

Fourth-Order Butterworth Filters
function [B, A] = four_o_butter(fc, Fs,
HL)

wc = 2*pi*fc;

a = 2*(cos(pi/8)+cos(3*pi/8));

b = 2*(1+2*cos(pi/8)*cos(3*pi/8));

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

 b0 = wc^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b1 = 4*wc^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b2 = 6*wc^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b3 = 4*wc^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b4 = wc^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

else

 b0 = k^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b1 = -4*k^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b2 = 6*k^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b3 = -4*k^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

 b4 = k^4/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

end

a1 = (-4*k^4 - 2*a*wc*k^3 + 2*a*wc^3*k
+ 4*wc^4)/(k^4 + a*wc*k^3 + b*wc^2*k^2
+ a*wc^3*k + wc^4);

a2 = (6*k^4 - 2*b*wc^2*k^2 +
6*wc^4)/(k^4 + a*wc*k^3 + b*wc^2*k^2 +
a*wc^3*k + wc^4);

a3 = (-4*k^4 + 2*a*wc*k^3 - 2*a*wc^3*k
+ 4*wc^4)/(k^4 + a*wc*k^3 + b*wc^2*k^2
+ a*wc^3*k + wc^4);

a4 = (k^4 - a*wc*k^3 + b*wc^2*k^2 -
a*wc^3*k + wc^4)/(k^4 + a*wc*k^3 +
b*wc^2*k^2 + a*wc^3*k + wc^4);

B = [b0 b1 b2 b3 b4];

A = [1 a1 a2 a3 a4];

Second-Order Linkwitz-Riley Filters
function [B, A] = so_LR(fc, Fs, HL)

wc = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

 b0 = wc^2/(k^2+wc^2+2*wc*k);

 b1 = 2*wc^2/(k^2+wc^2+2*wc*k);

 b2 = wc^2/(k^2+wc^2+2*wc*k);

else

 b0 = k^2/(k^2+wc^2+2*wc*k);

 b1 = -2*k^2/(k^2+wc^2+2*wc*k);

 b2 = k^2/(k^2+wc^2+2*wc*k);

end

a1 = (-2*k^2+2*wc^2)/(k^2+wc^2+2*wc*k);

a2=(-
2*wc*k+k^2+wc^2)/(k^2+wc^2+2*wc*k);

B = [b0 b1 b2];

A = [1 a1 a2];

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 31

Fourth-Order Linkwitz-Riley Filters
function [B, A] = four_LR(fc, Fs, HL)

wc = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'low'

 b0 = wc^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b1 = 4*wc^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b2 = 6*wc^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b3 = 4*wc^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b4 = wc^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

else

 b0 = k^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b1 = -4*k^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b2 = 6*k^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b3 = -4*k^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

 b4 = k^4/(4*wc^2*k^2+2*sqrt(2)*

wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

end

a1 = (4*wc^4+4*sqrt(2)*wc^3*k-4*k^4-
4*sqrt(2)*wc*k^3)/(4*wc^2*k^2+2*sqrt(2)
*wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

a2 = (6*wc^4-8*wc^2*k^2+6*k^4)/(4*wc^2*

k^2+2*sqrt(2)*wc^3*k+k^4+2*sqrt(2)*wc*k
^3+wc^4);

a3 = (-
4*sqrt(2)*wc^3*k+4*wc^4+4*sqrt(2)*

wc*k^3-
4*k^4)/(4*wc^2*k^2+2*sqrt(2)*wc^3*

k+k^4+2*sqrt(2)*wc*k^3+wc^4);

a4 = (k^4-2*sqrt(2)*wc^3*k+wc^4-
2*sqrt(2)*
wc*k^3+4*wc^2*k^2)/(4*wc^2*k^2+2*sqrt(2
)*wc^3*k+k^4+2*sqrt(2)*wc*k^3+wc^4);

B = [b0 b1 b2 b3 b4];

A = [1 a1 a2 a3 a4];

First-order Shelf
function [B, A] = fo_shelf(g, fc, Fs,
bass)

if g > 1

 a = (tan(pi*fc/Fs) -
1)/(tan(pi*fc/Fs) + 1);

 if bass

 b0 = 1 + (1 + a)*(g-1)/2;

 b1 = a + (1 + a)*(g-1)/2;

 else

 b0 = 1 + (1 - a)*(g-1)/2;

 b1 = a + (a - 1)*(g-1)/2;

 end

else

 if bass

 a = (tan(pi*fc/Fs) -
g)/(tan(pi*fc/Fs) + g);

 b0 = 1 + (1 + a)*(g-1)/2;

 b1 = a + (1 + a)*(g-1)/2;

 else

 a=(g*tan(pi*fc/Fs)-
)/(g*tan(pi*fc/Fs) + 1);

 b0 = 1 + (1 - a)*(g-1)/2;

 b1 = a + (a - 1)*(g-1)/2;

end

end

B = [b0 b1 0];

A = [1 a 0];

Second-order Shelf

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 32

function [B, A] = so_shelf(fc, Fs, g,
bass)

s = sqrt(2)/2;

rho = pi/2;

phi = (fc/Fs)*pi;

if g > 0.5 & g < 2

 F = sqrt(g);

elseif g > 1

 F = g / sqrt(2);

else

 F = g * sqrt(2);

end

gd = ((F^2 - 1)/(g^2 - F^2))^0.25;

gn = sqrt(g) * gd;

a = tan(pi*(fc/Fs - 1/4));

if bass

 b0 = -(-1-gn^2*a^2-a^2-2*gn^2*a-
gn^2-2*s*gn+2*s*gn*a^2+2*a)/(2*s*gd+1-
2*s*gd*a^2+gd^2*a^2+2*gd^2*a+a^2+gd^2-
2*a);

 b1 = -(2-4*a-4*gn^2*a-2*gn^2*a^2-
2*gn^2+2*a^2)/(2*s*gd+1-
2*s*gd*a^2+gd^2*a^2+2*gd^2*a+a^2+gd^2-
2*a);

 b2 = (1+2*s*gn*a^2-2*a+gn^2-
2*s*gn+2*gn^2*a+a^2+gn^2*a^2)/(2*s*gd+1
-2*s*gd*a^2+gd^2*a^2+2*gd^2*a+a^2+gd^2-
2*a);

 a0 = 1;

 a1 = (-2+2*gd^2*a^2+4*gd^2*a-
2*a^2+2*gd^2+4*a)/(2*s*gd+1-
2*s*gd*a^2+gd^2*a^2+2*gd^2*a+a^2+gd^2-
2*a);

 a2 = (gd^2*a^2-2*a+1+2*gd^2*a-
2*s*gd+a^2+2*s*gd*a^2+gd^2)/(2*s*gd+1-
2*s*gd*a^2+gd^2*a^2+2*gd^2*a+a^2+gd^2-
2*a);

else

 b0 = (gn^2*a^2+2*s*gn-2*gn^2*a+1-
2*s*gn*a^2+a^2+gn^2+2*a)/(1+gd^2+2*s*gd
-2*s*gd*a^2+gd^2*a^2-2*gd^2*a+a^2+2*a);

 b1 = (2-2*gn^2*a^2+4*gn^2*a+4*a-
2*gn^2+2*a^2)/(1+gd^2+2*s*gd-
2*s*gd*a^2+gd^2*a^2-2*gd^2*a+a^2+2*a);

 b2 = (1+2*s*gn*a^2-
2*s*gn+2*a+a^2+gn^2-
2*gn^2*a+gn^2*a^2)/(1+gd^2+2*s*gd-
2*s*gd*a^2+gd^2*a^2-2*gd^2*a+a^2+2*a);

 a0 = 1;

 a1 = (2-2*gd^2*a^2+4*gd^2*a+2*a^2-
2*gd^2+4*a)/(1+gd^2+2*s*gd-
2*s*gd*a^2+gd^2*a^2-2*gd^2*a+a^2+2*a);

 a2 = (1-2*gd^2*a+2*a+gd^2-
2*s*gd+a^2+gd^2*a^2+2*s*gd*a^2)/(1+gd^2
+2*s*gd-2*s*gd*a^2+gd^2*a^2-
2*gd^2*a+a^2+2*a);

end

B = [b0 b1 b2];

A = [a0 a1 a2];

Magnitude Plotting

function filt_plot(B, A, beg_freq,
end_freq, num_pts, Fs)

b0 = B(1);
b1 = B(2);
b2 = B(3);
a1 = A(2);
a2 = A(3);
F(1) = beg_freq;

%First magntidue point

H(1) =
20*log10(abs((b0+b1*(cos(2*pi*F(1)/Fs)-
i*sin(2*pi*F(1)/Fs))+b2*(cos(4*pi*F(1)/
Fs)-
i*sin(4*pi*F(1)/Fs)))/(1+a1*(cos(2*pi*F
(1)/Fs)-
i*sin(2*pi*F(1)/Fs))+a2*(cos(4*pi*F(1)/
Fs)-i*sin(4*pi*F(1)/Fs)))));

%Frequency multiplier

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 33

M = 10^((log10(end_freq)-
log10(beg_freq))/(num_pts-1));

for j = 2:num_pts

 %Update frequency

 F(j) = F(j-1)*M;

 %Magnitude points

 H(j) =
20*log10(abs((b0+b1*(cos(2*pi*F(j)/Fs)-
i*sin(2*pi*F(j)/Fs))+b2*(cos(4*pi*F(j)/
Fs)-
i*sin(4*pi*F(j)/Fs)))/(1+a1*(cos(2*pi*F
(j)/Fs)-
i*sin(2*pi*F(j)/Fs))+a2*(cos(4*pi*F(j)/
Fs)-i*sin(4*pi*F(j)/Fs)))));

end

%Plot on log-frequency axis

semilogx(F, H)

