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Designing Second-order IIR Filters for Cascade-
Implementation Digital Audio Applications

RUSTY ALLRED

Texas Instruments, Incorporated, Dallas, Texas USA

It is possible to implement |IR filters of any order by cascading first- and second-order 1IR
sections. Today, as Digital Audio Processors that offer configurable cascades of second-
order sections are becoming commonplace in the market, the designer's challengeisto find a
way to design coefficients for these to accomplish the overall filtering goal. This paper brings
together the basic information needed to design and implement awide variety of audio filters,
presentsit in amanner accessible to the system designer, and includes numerous examples as

well as Matlab® implementations.

0 INTRODUCTION

Until recently, audio systems have largely been
andog. Now the trend is moving rapidly to digitd
implementations. While the literature contains most
of the information needed to design and implement
digitd filters, it might not be easlly found in the mogt
useful forms. This paper gives the system designer a
concise tutorid containing enough information to
quickly get dated with the desgn and
implementation of digitd filters.

Digitd filters are much more flexible than andog
filters since they do not depend upon the availability
of specid components to implement the desired
mathematical function. Rather, digital second-order
filters have 5 degrees of freedom that can be
exploited to accomplish the desired filtering task.
Unfortunatdly, it is not aways clear how to find the
coefficients to fully exploit this flexibility. As a partid
answer to that dilemma, this paper surveys many of
the common techniques and gives practica
implementation tips.

The coefficients designed in this paper are those
for the so-called Direct Form digitd filters.

Although focusing on second-order filters, this
paper aso discusses some firgt-order filters as well,
since some gpplications require them. Furthermore,

there is no problem implementing firg-order filters
even in sydems tha offer only coefficient-
configurable second-order sections. As this paper
explains, the firg-order filter can be implemented
individually in the second-order section, or
combined with another firgt-order filter to form a
second-order filter.

It is possible to design filters in the analog domain
and convert them for use in digitd systems, and
these techniques are dso discussed in this paper.
But it is dso possble to design many filters directly
in the digital domain. Usualy a direct approach, if
available, will be favored since it offers the designer
more direct control of the filter transfer function and,
often, ease of design.

1 NOMENCLATURE

For purposss of this paper the following
nomenclature is observed. The trandfer function of
the second-order IR filter isas shown in EQ. (1).

b, +bz*+b,z?

H(2) = n — @
l+a,z" +a,z

For amplification, thisis also expressed as

H(z):@:ﬁ:—[bo bl bz] (2)

A A [1a a)]
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Note that the sample-domain equation for Eq. (1) is
asfollows

y(n) = bOX(I’l) + blx(n - 1) +b2X(n - 2)
-ay(n-1)-ay(n- 2
where the relationship back to Eq. (1) is understood

by converting Eq. (3) back to z-transform notation
by observing the following rules

1. Lower casex'sand y's become upper case.

2. n'saresubdtituted with z's.

3. Deays, n-A, become .

Y(2)

X(2)

Making these subgtitutions, Eq. (3) becomes:

Y(2)=b,X(2)+bX (22" +b,X(2)z*
-aY(2z'- a,Y(9z?

Y(2[1+aY(2z'+a,Y(2)z %] =
X(2)[b, +bz* +b,z ?]

3)

4. H(2) = @

()

Which becomes EqQ. (1) upon application of Eq. (4)
and some additiona manipulation.

A common audio implementation of this filter is
showninFg. 1[1].

Notice the negdtive dgns in the figure These
come directly out of Eq. (3). Obvioudy these can be
absorbed into the a coefficients, leading to another
standard version of Eq. (1), thistime with the + Sgns
in the denominator subgtituted with - dgns. For
purposes of this paper, the following convention is
used: when the coefficients are directly gpplicable to
Eq. (1), they will be written as shown in Eq. (2).
When the dgn has been absorbed into the a
coefficients, the following nomenclature is used:

[0, b b,]

e A g ©

Magnitude
Truncation

Fig. 1 Direct Form | second-order IR Filter

2 IMPLEMENTATION TIPS

3.1 Stability

Obvioudy, gtability is a key issue in filter design,
and the criterion for digitd filtersissmple: thefilter is
dable if its poles lie within the so-cdled unit circle.
Practically spesking it is sufficient to test the
coefficients (at implementation precison) to assure
that the roots of the denominator polynomia have
magnitudes lower than 1. For example, condder the
denominator polynomid

A =[1.0-1.96297931671143 0.96365261077881]
or
A@2) =
1.0-1.96297931 671143z + 0.96365261 077881z *
Itsroots, or the poles of thefilter, are
0.98148965835571 + 0.01818409523718i

which have magnitude 0.98165809260598 < 1, s0
thisfilter isgable.

If the filter implementation in use uses A' instead
of A, that is, if the signs of the a; and a, coefficients
are reversed such that

A'=[1.0 1.96297931671143 -.96365261077881]

the sgns must be rereversed prior to finding the
roots. Due to the implementation, A’ results in the
same dtable filter as A, but would not be a stable
filter, with poles of
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-2.36964475064116
0.40666543392974
except in those implementations where the
numerator coefficient Sgn reversd is absorbed in the
coefficients, as discussed in Section 2.

3.2 Coefficient Quantization

For fixed point implementations the filter
coefficients must be quantized to the appropriate
word gze. For mogt filters these can be ether
truncated or rounded. However, in the author's
experience, magnitude truncation, or truncation
toward O, is the safest method in cases where the
avalable precigon is only margindly sufficient. This
has not been the object of intense study, but, as a
practicdl matter, the author uses magnitude
truncation on coefficients, and tries other options if
the trandfer function deviates sgnificantly from the
desired result.

A fixed-point digitd filter coefficient will have
some number of integer bits, i, and some number of
fraction bits, f. It iscommon to cdl thisani.f format,
where the point indicates the binary point. For
example, a4.20 coefficient has 4 integer bits and 20
fraction bits, and a 5.23 coefficient has 5 integer bits
and 23 fraction bits.

Coefficient quantization can be accomplished in
the following way,

C, =27 gn(C)f2’ c|0 ©)

which is a fancy way of dencting an up shift of the
coefficient, C, by the number of fraction bits, f,
truncating toward 0, and then adown shift again by f
to produce the quantized coefficient Co,.

Notice that, snce the number of bits avallable to
represent the coefficient is limited, it is adso
necessary to saturate the coefficient to the maximum
and minimum vaues

Since coefficents mugt, in generd, take on
negative or podtive vaues, the 420 or 5.23

coefficients of the example above will be two's
complement numbers. Therefore, the maximum
positive number will be 271-27, while the maximum
negative coefficient will be -2, This saturation is
accomplished in the following manner:

Cos =max(- 24,min(27*- 2 .c,))  (®

For example, Table 1 shows some quantized and
saturated 4.20 coefficients, and Table 2 shows the

same coefficients for the 5.23 case:

Full Precison 4.20

25 7.99999904632568

9 7.99999904632568
53 5.29999923706055
2% 9.5367431640625x10”
2% 0

-3.98 -3.97999954223633
-9 -8

-25 -8

Table 1. 4.20 Quantization

Full Precison 523

25 15.99999988079071

9 9

53 5.29999995231628
2% 9.5367431640625x10”
3 1.192092895507813x10”
-3.98 -3.9799998998642

-9 -9

-25 -16

Table 2. 5.23 Quantization

3.3 Conversion to Hexadecimal
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While converson of decimd numbers to
hexadecima is commonplace, and there exig tools
for accomplishing this task, converting i.f, twos-
complement numbers is a dightly different wrinkle,
that sometimes causes confusion.

The easest way to accomplish this, and the way
that works for the standard filtering devices in the
marketplace, is as shown below:

1dec2hex( 2'C,+2'" )

C, <0
f dethex(Z C )

Otherwise

9

c:H

This equation makes each coefficient the
hexadecimd equivadent non-negetive integer thet is
required for mogst standard dec2hex commands. In
the absence of a standard decZhex command, the
non-negetive integer arisng from Eqg. (8) can be
converted to hexadecima by first converting to
binary, and then grouping the bits into groups of 4
and making a hexadecimd conversion.

By way of ample example, congder the vaue -
125 to be represented in 2.2 hexadecimal.
Quantizing according to Eq. (7) does not change the
vaue. Then, gpplying Eq. (9) resultsin the following:

-1.25%7 +2° =11
The binary representation of 11 is 1011, which
resultsin the hex code B.

Had this been 1.25, Eq. (9) returns1.25x2* =5,
which is 0101 in binary, and, of course, smply 5 in
hexadecimd.

For more redigic examples, condder -
3.97999954223633 from Table 1, and
5.29999995231628 from Table 2 above. Using Eq.
(8) for the former, a4.20 vdue

- 3.97999954223633 2%° + 2** =1.2603884x 10’
= 110000000101000111101100 in binary and

CO51EC in hexadecimal.

Likewise, 5.29999995231628 for the 5.23 case
produces 0010101001100110011001100110in
binary, and

2A66666 in hexadecimal.

4 FILTER DESIGN

The previous sections discussed various points
regarding the implementation of filters. Now, how
ae those filters designed to begin with? Tha
guestion is addressed in this section.

There are numerous possible methods to design
digita filters. For example, andog filters can be
converted to digitd usng such methods as the
bilinear transform or the impulse invariant method
[2], [3], [4], [5]. While these techniques are useful
and do help to make the world of andog filters
readily applicable to digitd filters, many digitd filters
can aso be designed directly. In fact, there is more
flexibility in this gpproach. In this section, some of
the most common filters for audio gpplications are
discussed.

4.1 Allpass Filters

Allpass filters can be designed directly in the
digitd doman. Besdes ther use in phase
compensation, they are aso building blocks from
which other filters can be derived [6], [7], [8], [9],
[10], [11], [12].

4.1.1 First Order
A firgt-order dlpass isdesgned asfollows

opf 0

tan =1

F. o
apf . 0

tang?“i;l
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where f; is the criticd frequency, Fs is the sample
rate and a is one of the coefficients of the find filter:

b, =a
b, =1

a,=a
B =[bo b, O]
A=[1a,0] (11)

The ay coefficient isaways 1, by definition. Snce
this is a firg-order filter, the b, and a, coefficients
are zero if implementing in a second-order section.
Later in this paper the method of combining two
fird-order filters for implementation in a sngle
second-order section is discussed.

Figs 2 and 3 show respectively the phase
responses and group delays for 44.1 kHs sample
rate implementations of four firg-order dlpass filters
with critica frequencies of 0.1, 04, 1.6, and 6.4
kHz.

Appendix A gives Matlab® code for the
implementation of this filter, and the other discussed
within this paper. To make this code genericaly
useful as pseudo code, for any reader not familiar
with Matlab®, only generd mathematical commands,
which can be found in mogt any math library or
computation tool, have been used rather than relying
upon Matlab's extengve libraries of filtering tools.

Note that the response curves in this paper are
for non-quantized filter coefficients. For some filters
the responses might deviate from those shown due
to coefficient quantization effects. In particular, for
higher sample rates, lower cut frequencies, and for
lower coefficients this will be more pronounced. For
a thorough discusson of quantizaton effects and
response distortions, please see [13] and [14].
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Fig. 2 Phase Responses for First-order Allpass Filters
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Fig. 3 Group Delays for First-order Allpass Filters

Table 3 shows the coefficients for the first of
these four filters firg in unquantized decimd, then in
4,20 hexadecimd and in 5.23 hexadecimd with
reversed-sgn denominator coefficients.

f.=400Hz Fs=441kHz

B Decimal -0.94457402736173 1.0 0.0
A Decimal (1.0) -0.94457402736173 0.0
B 4.20 Hex FOE307 100000 000000

A 4.20 Hex FOE307 000000

B 5.23 Hex F871833 0800000 0000000
A' 5.23 Hex 078E7CD 0000000
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Table 3. Coefficients for First-order Allpass Filters

4.1.2 Second Order

A second-order dlpass filter is desgned as

folows
taw?‘;—b%- 1
tang——+1

where b is the desired bandwidth.

apf_ O
G
b, =-a
b, = b(1- a)
b, =1
a, = b(l- a)
a,=-a
B =[bo by by]
A=[la a)

(12)

(13)

(14)

Figs. 4 and 5 respectively show phase responses
and group delays for 44.1 kHz sample rate
implementations of second order dlpass filters with

the following parameters.

Table 4. Parameters used for Second-order Allpass

Filter Examples

:
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Fig. 4. Phase Responses for Second-order Allpass
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Fig. 5. Group Delays for Second-order Allpass Filters

fec b

f,=6400Hz | b=800Hz Fs=44.1kHz
100 Hz 200 Hz

BDecima | 0.89205429 -1.158481541 1.0
400 Hz 200 Hz ADecima | (1.0) -1.1584815  0.8920543
1600 Hz 400 Hz B420Hex | OE45DA ED76DD 100000
6400 Hz 800 Hz A420Hex | ED76DD OE45DA

B523Hex | 0722ED5  F6BBGEL 0800000
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A'523Hex | 094491F F8DD12B

Table 5. Coefficients for Second-order Allpass
Filters

Table 5 shows the coefficients for the last of
these four filters firgt in unquantized decimd, then in
420 hexadecima and in 5.23 hexadecimd with
reversed-sign denominator coefficients.

4.2 Parametric Equalization Filters

One of the most commonly encountered second-
order IIR filters is the bdl-shaped parametric
equaization filter. Orfanidis offers a unique approach
with some beneficid features, dong with Matlab®
code to implement it [15]. Other authors, [6], [7],
[12], [16], [17], [18] offer other approaches, such
as the one presented here, which is based upon an
dlpassfilter.

g<1
(15)

Otherwise

where b is the desred bandwidth, and g is the
desired (linear) gain.

b=-co a@pf"g (16)
F. &

H=g-1

b, =1+(1+a)¥

b, = b(l- a)

b, =-a- (1+a)%

a1=

a,=-a

B =[by by by (17)
A=[1la aj
g b fe
2(6dB) 200Hz | 100 Hz
0.5 (-6 dB) 200Hz | 400 Hz
2.82(9dB) 400Hz | 1600 Hz
0.25(-12dB) | 800Hz | 6400 Hz

Table 6. Parameters used for Second-order

Equalization Filter Examples (Note:

Q=1Jb)
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Fig. 6. Magnitude Responses for Second-order

Equalization Filters
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Fig. 7. Phase Responses for Second-order
Equdization Filters

g=2 b=200Hz Fs=96 kHz

f.=100Hz

B Decima 1. 006503 -1.986952 0.980492
A Decima (1.0) -1.986952 0.986995
B420Hex | 101AA2 E03572 O0FBO018
A420Hex | E03572 OFCABB
B523Hex | 080D513 FO1AB8C 07DBOCS
A'523Hex | OFEB474  F81AA27

Table 7. Coefficients for Second-order Equalizaton

Filters

4.3 Butterworth Filters

Butterworth filters, [2], [3], [4], [19], [20], [21],
are well-known and widdly-used for high- and low-
pass filtering operations. Technicaly, Butterworth
filters are desgned in the andog doman, and
converted for use in the digital domain. However,
these steps are combined into a smplified process
presented here. Matlab® and other tools have built-
in functions to desgn Butterworth filters, but the
Matlab® functions presented in the appendix of this
paper use only standard mathematica functions so
that they will be useful as pseudo code to guide the
implementation of these filtersin any language.

4.3.1 First Order Low- and High-Pass
The denominator of a first-order analog Butterworth
filter is

s+w,

where w; is 20f
f. isthe desired cut frequency.
For low-pass, the numerator is w,, and for high-

passitis s:

w,
HL(S): <,
S+W,
Converting to Digital
A digtd filter can be crested from andog

coefficients through the bilinear transform [2], [3],
[4]

HH(S) =

18
stw, (®

H(2) = H(9)| 1)
z+1

2f,
opf./ 0
e R
and F, isthesampling frequency.
In other words,

where k = (19)

w. +w.zt
H (2= o
O -
k- kz*
Hy(2) =

k+Wc + (ch - k)z_l

In implementation the leading tem of the
denominator must be equal to 1. Therefore, the
above equations must be normdized. The following
IS the equation for a firg-order digital Butterworth
low-pass filter:
WC
b = K +w,

WC
K+w,

b1:

_w.-k

a, =
tk+w,

B =[bo b, 0] (20)
A= [1 a; O]

The numerator coefficients for the high-pass case
ae a shown in Eg. (21); the denominator
coefficients are the same as those for the low-pass
case, in Eq. (20):
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B = [bo by O] (21)

The magnitude and phase responses for firg-
order Butterworth low-pass filters at cut-off
frequencies 100, 400, 1600, and 6400 Hz are
shown in Fig. 8 and 9. The coefficients for the 1600
Hz case are shown in Table 8.

The magnitude and phase responses for firgt-
order Butterworth high-pass filters a  cut-off
frequencies 100, 400, 1600, and 6400 Hz are
shown in Fig. 10 and 11. The coefficients for the
100 Hz case are shown in Table 9.

20

25k

-30

10

Hertz
Fig. 8. Magnitude Responses for First-order
Butterworth Low-pass Filters

A0k

ank

Degrees

SS0F

0k

B0F

-0

200 .

Hertz

Fig. 9. Phase Responses for First-order Butterworth

Low-pass Filters

f, = 1600 Hz Fs=48kHz
BDedmad | 0. 095107983 0.095107983 0
ADecimd | (1.0) -0.809784033 0
B420He | 01858F 01858F 000000
A420Hex | F30B20 000000

B523Hex | 00C2C7TF  00C2C7F 0000000
A'523Hex | 067A700 0000000

Table 8. Coefficients for First-order Butterworth

Low-pass Filters
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Fig. 10. Magnitude Responses for First-order
Butterworth High-pass Filters

Hertz
Fig. 11. Phase Responses for First-order
Butterworth High-pass Filters

f.=100Hz Fs=48kHz
B Decima 0.993497481 -0.993497481 O
A Decimal (1.0) -0.986994963 O
B420Hex | OFES5D FO1AA3 000000
A420Hex | FO3545 000000
B523Hex | 07F2AEC F80D514 0000000
A'523Hex | 07E55D9 0000000

Table 9. Coefficients for First-order Butterworth

High-pass Filters

4.3.2 Second Order Low- and High-Pass
The equations for second-order high- and low-
pass filters can be derived usng the methodology
shown for the first-order case above. Here, only the
results are shown. The equations for the digita low-
passfilter coefficients are shown in EQ. (19).

W
bo_vvf+k2+«/§kvvc
oW
DT I 2w,
LW

© W2 K+ 2kwy
W - 2K
= T WK+ 2w,
W +K2 - 2k,
% "W +KE 2k,
B =[bg by by]
A=[la a) (22)

where k and U, are defined as in the beginning of the
previous section.

The numerator coefficients for the high-pass case
are shown in Eq. (23); the denominator coefficients
are the same as for the low-pass case, in EQ. (22).

k2
b. =
© W2 +Kk?Z 4 2kw,
b, = - 2k?
W2 +k? ++/2kw,
2
b, = a
WZ +k?2 +/2kw,
B =[bo by by (23)

Figs. 12 and 13 show respectively the magnitude
and phase responses for second-order Butterworth
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low-pass filters, Table 10 shows the coefficients for
the 400 Hz case a a sampling rate of 48 kHz.

The high-pass filter cases are shown in Figs 14
and 15; Table 11 shows the coefficients for the 6.4
kHz case with a sampling frequency of 48 kHz.

Herlz
Fig. 12. Magnitude Responses for Second-order
Butterworth Low-pass Filters
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Fig. 13. Phase Responses for Second-order
Butterworth Low-pass Filters

B 5.23 Hex

00015A7 O0002B4E 00015A7

A'5.23 Hex

OF686A4 F8922C0

Table 10. Coefficients for Second-order Butterworth

Low-pass Filters

dbi

Henz

Fig. 14. Magnitude Responses for Second-order

Butterworth High-pass Filters
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Fig. 15. Phase Responses for Second-order

Butterworth Low-pass Filters

f.=400Hz Fs=48kHz

B Decimal 0. 000661 0.001322 0.000661

A Decimal (1.0) -1.925984 0.928627

B420Hex | 0002B4 000569 0002B4

A420Hex | EL2F2C  OEDBA8

f.=6400Hz Fs=48kHz

B Decimal 0.547083 -1.094166 0.547083
A Decimal (1.0) -0.877271 0.311060

B 4.20 Hex 08C0D9 EE7E4D 08C0D9
A420Hex | FLF6B4  04FALA

B523Hex | 04606CE  F73F263 04606CE
A'523Hex | 0704A67 FD82F2D
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Table 11. Coefficients for Second-order
Butterworth High-pass Filters

4.3.3 Third Order Low- and High-Pass

The equations for third-order low- and high-pass
filters are shown in Egs. (24) and (25) below. Note
that the denominator coefficients are the same for
either high-pass or low-pass, and are, therefore,
shown only in Eq. (24).

Figs. 16 through 19 are the magnitude and phase
plots for third-order Butterworth low- and high-pass
filters. Tables 12 and 13 show the decima
coefficients. Implementation as  second-order
sections will requiring factoring, which is discussed in
Section 5 of this paper.

- W
W+ 207k + 20
bl: 3"5
W+ + 207k + 2w
bZ: 3\,\5
W+ 207k + 2
- W
WK + 20k 2wk
_ 3 3K + 2wk - 2wK?
2T W I+ Ak 2w
_ 3 +3K - 2wk - 2K
% TN I 2wk Ak
_ 3w - 3+ 2wk - 2wK?
az_ V\Z-ke’-Z\NCzk+2\l\4k2
B =[bo by by b

A= [1 a; dy as] (24)
where k and U, are defined as in the beginning of the
section on first-order Butterworth filters.

k3
b. =
© W K+ 20k + 2wk
_ - 3k®
W + k® + 20k + 20 k?
3<3
bz_mf+k3+aAfk+Mk2
_k3
b, =
*owg kG + 202k + 2an k2
B= [bo bl b2 b3] (25)

b,

Herlz
Fig. 16. Magnitude Responses for Third-order
Butterworth Low-pass Filters
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Fig. 17. Phase Responses for Third-order
Butterworth Low-pass Filters

f. =1600 Hz Fs=48kHz
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B Decimd 0. 0009 0.0028 0.0028 0.0009

ADecimad | (1.0) -2.5819 2.2467 -0.6573

Table 12. Coefficients for Third-order Butterworth
Low-pass Filters

il i i i
i’ iy i
Herlz

Fig. 18. Magnitude Responses for Third-order
Butterworth High-pass Filters
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Fig. 19. Phase Responses for Third-order
Butterworth High-pass Filters

f.=100Hz Fs=48kHz

B Decimd 0.987 -2.961 2.961 -0.987

A Decimal (1.0) -2.974 2.948 -0.975

Table 13. Coefficients for Third-order
Butterworth High-pass Filters

4.3.4 Fourth Order Low- and High-Pass

The equations for fourth-order low- and high-
pass filters are shown in Egs. (26) and (27) below.

Note that the denominator coefficients, shown in Eq.
(26), are the same for both cases.

_ A
%= k* +aw k® + bwZk® +aw’k +w/
_ At
k4 +awk® + bwk? +awtk +w/
_ A
K +awk® + bnZk? +anik +w/
_ A
 K* +awk® + bwk? +aw?k +w/
. W
Tk +awk® + bnw?k? +awk +w/
_ - 4k* - 2aw K’ + 2awk + 4w
AT T Ak + bk fank + W
g = 6k* - 2bw’k* + 6w/
2 k* +awk® + bwfk? +aw’k +w/
_ -4k +2awk® - 2aw’k + 4w
% T ank + bk +anik tw
L K- awC + bagKe - awgk v
Yk +awk’ + b k® +awk +w}
where a = 2[cos(%) + cos(%'f—)],

b = 21+ 2cos(z)cos(2

by

b,

b,

B = [bo bx b, bs by] (26)
A =[1layaasa]
k4
%= +awk® + bw?k? +anik +w/
_ 4k
e +awk® + bwek? +aw’k +w/
) 6k
b= +aw k® + bw?k? +an’k +w/
) e
b= +awk® + bw?k? +aw?k +w/
k4
b= +aw k® + bwZk? +an’k +w/
B= [bo b1 bz b3 b4] (27)
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Fig. 20. Magnitude Responses for Fourth-order
Butterworth Low-pass Filters
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Fig. 21. Phase Responses for Fourth-order
Butterworth Low-pass Filters
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Fig. 22. Magnitude Responses for Fourth-order
Butterworth High-pass Filters
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Fig. 23. Phase Responses for Fourth-order
Butterworth High-pass Filters

B Decima x10° [ 0.439 1.76 2.63 1.76 0.439

f.=6400Hz Fs=48kHz

A Decimal (1) -3.86 5.60 -3.61 0.872

B Decimal 0.322 -1.29 1.93 -1.29 0.322

Table 14. Coefficients for Fourth-order Butterworth
Low-pass Filters

A Decimal (1) -1.84 1.57 -0.636 0.104

Table 15. Coefficients for Fourth-order Butterworth
High-pass Filters

4.4 Linkwitz-Riley Filters

Although not so genedly wel-known as
Butterworth filters, Linkwitz-Riley high-pass and
low-pass filters are frequently used for crossovers,
and ae, therefore, wdl-known at least in audio
circles [19]. Like Butterworth filters, Linkwitz-Riley
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filters are dedgned in the andog domain, and
converted for use in the digital domain. However,
these steps are combined into a smplified process
presented here. Once again functions to implement
these filters in Matlab® are presented in the

appendix.

4.4.1 Second Order Low- and High-Pass

The equations for second-order low- and high-
pass filters are shown in Egs. (28) and (29) below.
Since the denominator coefficients are the same for
both cases, they are shown only in Eq. (28).

_ W,
"W K+ 2k
=2
oW +K+ 2kw,
b = A
2T W2 +K + 2kw,
w2
WK 2k
_ W +K° - 2kw,
= Tk 2k,
B =[bo by by]
A=[laa) (28)
k2
bo_wf+k2+2kwc
S
Yowg +k? + 2kw,
k2
b2_w§+k2+2kwc
B = [l by by (29)

Figs. 24 and 25 show respectively the magnitude
and phase responses for second-order Linkwitz-

Riley low-pass filterss Table 16 shows the
coefficients for the 100 Hz case a a sampling rate of
192 kHz.

The high-pass filter cases are shown in Figs. 26
and 27; Table 17 shows the coefficients for the 200
Hz case with a sampling frequency of 192 kHz.

- .._\ S . '\-\_\\\\
: IR
1 A \ ."_ ""\l
B .15 I1I". .I.l". Il"
\ . Il\
| h !
Voo \x
x| ! . |
[
. I i L
= if i’ it
Heriz

Fig. 24. Magnitude Responses for Second-order
Linkwitz-Riley Low-pass Filters
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Fig. 25. Phase Responses for Second-order
Linkwitz-Riley Low-pass Filters

f.=100Hz Fs=192kHz

B Decima x10° | 2. 668566 5. 337133 2. 668566

A Decimal (1.0) -1.9934657 0.9934764

B 420 Hex 000002 000005 000002
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A 4.20 Hex EOLACA OFE547 A420Hex | EOBABA OF9627
B 523 Hex 0000016 000002C 0000016 B523He | 07ES73C F035187 07E573C
A'5.23 Hex OFF29E2 F80D5C5 A'523Hex | OFCABB3  F834EC2

Table 16. Coefficients for Second-order Linkwitz-

1=}
]

Riley Low-pass Filters

s L

{8 1’ i’
Heriz

Fig. 26. Magnitude Responses for Second-order

Linkwitz-Riley High-pass Filters

Fig.
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Herz
27. Phase Responses for Second-order
Linkwitz-Riley High-pass Filters

f, = 400 Hz Fs=192kHz
BDedmad | 0. 987037 -1.974074 0.987037
ADecima | (1.0) -1.9739899 0.9741591
B420Hex | OFCAE7 EOBA31 OFCAE7

Table 17. Coefficients for Second-order Linkwitz-

Riley High-pass Filters

4.4.1 Fourth Order Low- and High-Pass

The equations for fourth-order low- and high-
pass filters are shown in Egs. (30) and (31) below.
Since the denominator coefficients are the same for
both cases, they are shown only in Eq. (30).

b0=

b1:

, =

b3:

=

& =

A

W+ 24/ 202K + An2k? + 2420 k® +k*
A

W - 2Bk anK -

a4_

W+ 24202k + an2k? + 242w ke +k*
6w,

W+ 2420k + An2k? + 242w k3 +k*
AV

W+ 24202k + Ak 2 + 2420 k3 +k*
W,

W+ 24/ 202K + A2k + 2420 k3 +K*

anf + 4202k - A2n ke - 4k
W4 + 220k + 4n’k? +24/2n kP +k*
6w, - 8w’k? - 6k*

W“+2\/§v\/3k+4vv2k2 + 2420 k3 +k*
AN - &2k + 4 Ak - 4k

w‘ +2«/—2vv3k+4/v2k2 + 2420k +Kk*
2\[2n k® +k*

W+ 22082k + a0k + 24/ 2w ke + K
(30)
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_ k* N .
b = W+ 2/ 207K + AWK + 2420k +K* alily e Fe
— - 4k* Amk :\”'_ ..\'. H\'\.
i W+ 24/ 202K + an2k? + 242 k3 +k* el W \” HHW
. 6k I T
2T W+ 24208k + An2k? + 242wk + K | ‘ | \\
_ - 4k ] e N W W
. T W+ 220k + APk + 242 K+ K sl P e e
% e =
b, = W +2 x/—Z\NCgk + AnPKE +2 «/—Z\chg K Fig. 29. Phase Responses for Fourth-order

Linkwitz-Riley Low-pass Filters

(31) f. = 1600 Hz Fs=192 kHz

FIgS. 28 a,]d 29 g’]OVV rESI:E:I'de the m@n'tude B Decima x10° 0.437 1.75 2.62 1.75 0.437

and phase responses for fourth-order Linkwitz-Riley A Decimal (1.0) -3.85 5.57 -3.58 0.862
low-pass filters, Table 18 shows the coefficients for Table 18. Coefficients for Fourth-order Linkwitz-
the 1600 Hz case a a sampling rate of 192 kHz. Riley Low-pass Filters
il o - - -#
The high-pass filter cases are shown in Figs. 30 Tl . /
and 31, Table 19 shows the coefficients for the o . Ii )
6400 Hz case with a sampling frequency of 192 al ; ;
kHz. { } ¢
@ -5 |I '
!
1] \ l g 4 lill ’I.
5 III. gl | :' |
; ] &5 l.' / (
" -.ll |lI ] . . - £ , ,|I .
|II ]. .":'1 1IZ|:' II]‘
< i I'. \ Fig. 30. Magnitude Responses for Fourth-order
- l : \ | Linkwitz-Riley High-pass Filters
5 |
; 'L ':_
10 10 o
Herz

Fig. 28. Magnitude Responses for Fourth-order
Linkwitz-Riley Low-pass Filters
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Fig. 31. Phase Responses for Fourth-order
Linkwitz-Riley High-pass Filters

f, = 6400 Hz

Fs=192kHz

B Decimd 0.744 -2.97 4.46 -2.97 0.744

ADecima | (1.0) -3.41 4.39 -2.54 0.553

Table 19. Coefficients for Fourth-order Linkwitz-
Riley High-pass Filters

4.5 Bass and Treble Shelf Filters

Often used in tone control gpplications, bass and
treble shef filters are an important class of audio
filters. Here both first [6] and second [22] order
desgns are discussed. Once again functions to
implement these filters in Matlab® are presented in

the appendix.

4.5.1 First Order Bass and Treble Shelves
The equations for first-order bass and treble shelf
filtersare shown in Eq. (32) below.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/digtribute.

if g>1
apf, 0
tan =1
§E@
tmg——+l
if bass
o :1+(1+a) g-1)
° 2
__ (+a)g-1)
b =a+ >
dse %treble
o . -a)e-1)
° 2
_ . (a-1)g-1)
b =+
ese %g £1
if bass

tan?i% g
tang——+ g

o oo lralg

2
L+a)(g- 1)

b, =a+
dse %treble
g>¢an§ 9
a=
g&mg c—+1
sﬂ
o =14 0-2)g-1)
° 2
(a- 2)(g- 1)
b =a+——"=— >
B=[bob10]
A=[1a10]

(32)
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Figs. 32 and 33 show respectively the magnitude
and phase responses for boost and cut first-order
shelf filters, with corners a 100 Hz and 1600 Hz;
Table 20 shows the coefficients for the 100 Hz
boost case a a sampling rate of 32 kHz.

A'5.23 Hex

07D82D6 0000000

Table 20. Coefficients for First-order Bass Shelf

451 Second Order

Shelves

Filters

Bass and Treble

ot

S~ : \
\\H\.\_
el R
1 ||I1’ 1|I:|‘
Heiz
Fig. 32. Magnitude Responses for First-order
Shdlf Filters
b
af ik
il TR _M’ a = . -
] % —— iy — & 4
- - — = 5
b e
I:I-II:I- H"‘“‘\\H\ ’,/,).
;b \\\H-__#-ﬂ'/
A0k
TS
Heriz

Fig. 33. Phase Responses for First-order Shelf

Filters

f.= 100 Hz Fs=32kHz 9=1.995 (6 dB)
B Decimd 1.0096763 -0.9708790 0.0
A Decimd (1.0) -0.9805553 0.0
B 4.20 Hex 1027A2 F07748 000000
A 4.20 Hex FO4FA6 000000
B 523 Hex 0813D12 F83BA3D 0000000

DRAFT.

The equations for second-order bass and treble
shdlf filters are shown in Eq. (33) below.

if g3 05& g£2
F=.g
dsif g>1
-9
F=<2
2
dse
F:gﬁ
end
_ F?-1
9y o7 - F2
gn_gd'\/a
a-t:anaeaefc-lg9
P
A2 P f
S=—; r=2; f=—=
2 2 FIO
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if bass
b, =-

-1+2a- 2g,- 2g2a+2sg,a’- a’- g2 - g’a’

1- 2a+ g, - 5g,a°+2gZa+a’ +g2 +g2a’

b, =-
2- 4a- 4g2a+2a®- 292 - 2g2a’®

1- 2a+2sg, - 2sg,a° +2gja+a’+ g2 +gla’
b, =
1- 2a- 259, +2g2a+2sg,a’ +a’ + g7 + g2a’

1- 2a+2sg, - 2sgya +2g2a+a’+ g2+ g2a’
a1 =
- 2+4a+4gia- 2a* +2g; +2g;a’

1- 2a+2sg, - 2sg,a’ +2g2a+a’ +g; +g2a’

a, =

1- 2a- 2sg, +2g2a+2sg,a’ + a® + g2 + g2a’

1- 2a+2sg, - 2sg,a’ +2g2a+a’ +g2 +g2a’

else
b, =

1+2a+2g,- 29%a- 2sg,a’ +a’+g? +g2a’

1+2a+25q, - 5g,a° - 2g2a+a’+g2+g2a’

b, =
2+4a+4g’a+2a’- 2g° - 2g’a’

1+2a+Xg, - QSgda2 - 29§a+ a’ +g§ +9§az

b, =

1+2a- 2sg,- 2g;a+2sg,a’ +a° +g; +g.a’

1+2a+2g, - 5g,a° - 2g7a+a’ +g] +gja’

a]. =
2+4a+4gia+2a* - 295 - 2gia’

1+2a+2sg, - 2sg,a’ - 2gja+a’ +g; +gia’

a, =

1+2a- 2sg, - 2g%a+2sg,a’ +a’ + g2 +g2a’

Figs 34 and 35 show the magnitude and phase
responses for boost and cut first-order shelf filters,
with corners a 100 Hz and 1600 Hz, Table 20
shows the coefficients for the 100 Hz boost case a
asampling rate of 32 kHz.
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Fig. 34. Magnitude Responses for Second-order
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Fig. 35. Phase Responses for Second-order Shelf

1+2a+2sg, - 2sg,a° - 2g2a+a’ + g2 +g2a’

B= [bo b]_ b2]
A= [1 Ay az]

(33)

Filters
f.=1600Hz Fs=32kHz 0=0.355 (-9 dB)
B Decimal 0.39051 -0.59723 0.24239
A Decimd (1.0) -1.71565 0.75132
B 4.20 Hex 063F8C F671C4 03EOCF
A 4.20 Hex E48CB8 0C0568
B 5.23 Hex 031FC62 FB38ELE 01F067D
A' 5.23 Hex 0DB9A45 FI9FDABE
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Table 21. Coefficients for Second-order Treble
Shdf Cut Filter

5 IMPLEMENTING FILTERS OF OTHER
ORDERS
Using second-order IR structures, 1R filters of
any order, up to and including 2 times the number of
second-order filters available, can be implemented.
In this section the method of implementing other-
than-second-order filtersis described.

5.1 Implementing First-order Filters
Frg-order filters are not only important in their
own right, but they are an essentid pat of
implementing filters of higher, odd orders. A firg-
order filter can be implemented in the second-order
sructure by smply downloading zero for the vaues
of b, and a,. However, if more than one firs-order
filter is to be implemented, two of them can be
implemented together in a sngle second-order
dructure. Thisis done by multiplying the coefficients
in the fallowing fashion:
Firs-order Filter 1: [b]_o, b11], [1, aj_]_]
Firg-order Filter 2: [D20, B21], [1, @21]
Resulting second-order Filter:
[b10 b20; b10 b21 + bZO b111 bll bZl]
[1, @10 @21 + @z A1, A1 A1) (34)

5.1.1 First-order Filter Example

Let filter 1 be afirg-order Butterworth high-pass
filter a 100 Hz, to be implemented a a sample rate
of 48 kHz. The response of this filter is shown in
Fig. 36.

Hertz

Fig. 36. Filter 1

For Filter 1,
B =[0.99349748134078 -0.99349748134078],
A =[1.00000000000000 -0.98699496268155]
To implement this filter done in a second-order
section, the following coefficients should be
downloaded:
B =[0.99349748134078 -0.99349748134078 0],
A =[1.00000000000000 -0.98699496268155 0]

Now let Filter 2 be a5 dB, first-order bass shelf
at 500 Hz as shown in Fig. 37.

10

Hertz

Fig. 37. Filter 2

For Filter 2,
B =[1.02467059808085 -0.91193160991121],
A =[1.00000000000000 -0.93660220799206]
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To implement this filter done in a second-order
section the following should be downloaded:
B =[1.02467059808085 -0.91193160991121 O],
A =[1.00000000000000 -0.93660220799206 0]

Now, if these two filters are to be combined and
implemented as a single second-order filter, the
coefficients, as derived by Eq. (31) will be as
folows

B=[1.01800765839728 -1.92400941599910 0.90600175760182]
A=[1.0000000000000 -1.92359717067361 0.92442166132458]

Whether implemented separately in two second-
order sections, or jointly in one, the composte filter
response will be that shown in Fig. 38.

dB

Hertz

Fig. 38. Composite Filter

5.2 Implementing Higher-order Filters

The procedure for implementing filters of higher
orders as cascades of second-order filter sectionsis
discussed in this section.

Consider an n"-order filter as shown in Eq. (35):
H(z) =2 +b12'11 +sz'22 ++b, 2"
l+az +a,z°+---+a,2"
(35

This equation can be factored and written in the
following form:

H(z) = b, x
(z- Zg- Z,)i)(Z2- Zig +Zyi) %

(z- Pgr- Pyi)(z- Pg+ Pyi)

(2- Zor- Z5i)(Z- Zog +2Zy i) %

(z- Pir- Pyi)(z- Py +Pyyi)--
(z- Zw-Z,1)(z- Z,r +Z,i)

(z- Pr- P,i)(z- Pgr+P,i)
Where Z and P represent Zeros and Poles and
where R and | represent their Red and Imaginary
parts. In addition, by isthe fird numerator coefficient
of the origind equation. This contans scaing
information that is lost when factoring.

(36)

As shown in Eq. (36), dl of the complex poles
and zeroes will appear in complex conjugate pairs.
For filters of odd order, at least one red pole and
one red zero will remain. In some cases there might
also be other red poles or red zeros. The red poles
and zeros can be implemented as described in the
section above discussing fird-order filters. That is, if
there is more than one redl pole and one red zero,
they can be combined. Otherwise, the single, red,
firs-order filter isimplemented using a second-order
section.

After deding with the red poles and zeros, the
remaining complex conjugete pars can then be
combined into second-order sections with red
coefficients as shown in Eq. (37):
(Z' ZlR - lei)(Z- ZlR + lei)
=(z- 2,0z~ Z;)
z® - (Zl + ZI)Z + lei

2 2 2
z2°- 22,52+ 25+ 2]

(37)

Now, by combining a pair of complex zeroes
with a pair of complex poles, and dividing through
by 7, afilter in the form of Eq. (1) appears. The
following is generd advice for cresting the best filter
implementations.

1. Usudly the greatest success is achieved when

the second-order sections each appear to be a
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viable filter in its own right; massve boods or
other scaling digparities between filters can lead
to numericd problems. In generd, if the poles
and zeros are ordered according to magnitude,
and greatest-magnitude poles are paired with
greatest-magnitude zeroes, the resulting filters
will be well-behaved.

2. Noticethe by in Eq. (36), the by coefficient from
the origind, higher-order filter. This scae factor
from the origind filter is logt in the factoring
process and must be re-gpplied. Since this
discusson is goecific to cascade filter
implementations, this scae factor needs to be
goplied to only 1 of the resulting filters. If the
scae factor is less than one it should be gpplied
to the filter with the grestest magnitude (or
largest numerator coefficients). Otherwise, it can
be gpplied to a amdler filter. Sometimes it might
make the most sense to didribute the scae
factor across multiple filters. For example, when
factoring a fourth-order filter, it might make
sense to scale both resulting  second-order
sections by the square root of by.

3. Aswith any filter implementation, care should be
taken to see that there is adequate headroom for
eech of the filters being implemented. If onefilter
provides a cut that compensates another filter's
boog, placing the cut fird in the chain will help
prevent dipping between filters. Artificidly
scding the numerators, and using subsequent
filters or other system gains to compensate for
the scaling can dso hedp assure adegquate
headroom.

5.2.1 Higher-order Filter Example

In this example a 500 Hz, fourth-order
Butterworth high-pass filter is desgned for a 44.1
kHz sampling rete:
B =[0.91110246841372 -3.64440987365487
5.46661481048230 -3.64440987365487 0.91110246841372)

A =[1.00000000000000 -3.81386538359704
5.45872379150560 -3.47494261156512 0.83010770795173]

When the poles and zeros are computed, two
red zeros are found, and al poles are complex:

Zeros.
1.00022566526664
0.99977439304055
0.99999997084641 - 0.00022563610571i
0.99999997084641 + 0.00022563610571i
Poles:
0.97101464699516 + 0.06401591243324i
0.97101464699516 - 0.06401591243324i
0.93591804480336 + 0.02555784867173i
0.93591804480336 - 0.02555784867173i

Taking care to assure that the red zeros are
handled as apair, in order to alow al complex roots
to be handled in complex conjugeate pairs, Eq. (37)
is applied to derive two sets of second-order
equations. The coefficients of these are shown

below:

B1 = [0.9545168769664 -1.9090336982776 0.9545168699073]
A1 =[1.000000000000 -1.8718360896067 0.8765957902173]
B2 = [0.9545168769664 -1.909033809588 0.9545168840256]
A2 =[1.000000000000 -1.9420292939903 0.9469674817238]

Notice that the by coefficients are equd in these
two sets of coefficients. This is because each of the
deived numerator polynomids was multiplied
though by the square root of the by coefficient of the
origind equation.

Fig. 39 shows the two second-order filters in
dotted and dashed lines, and the fourth-order filter
resulting from cascading them, in other words, the
origind fourth-order filter, asasolid line.
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Fig. 39. Factored and reconstructed fourth-order
Butterworth filter

Filters from Other
Second-order Cascade

5.3 Converting
Structures for
Implementation
Although it is possble to generate any desired
filter function usng a cascade dructure, sometimes
the designer will be caled upon to convert filters that
have dready been designed for a pardld or
combination cascade-pardld dructure to be
implemented fully in a cascade dructure. The
process for doing thisis described in this section.

Firg, condder the filter ructure shown in Fig.
40.

Fig. 40. Cascade-Paralldl Filter Structure

Ha2) | | Hs(2
j

| Hi(@ j—}
| Hi@ |

This dructure has an overdl transfer function,
from input to output, of

H,(2)[H,(2H(2)+ H, (2]

(38)

To implement this transfer function in a cascade
sructure, this overdl transfer function is computed,

then factored
implemented.

into second-order sections and

5.3.1 Structure Conversion Example
Suppose that the structure of Fig. 40 is populated
with the following trandfer functions

Hi(2) is a first-order Butterworth highpass filter
with a cutoff frequency of 80 Hz. This filter has the
following coefficients
B = [0.99479123765938 -0.99479123765938]

A =[1.00000000000000 -0.98958247531875]
Hx(2) is a second-order Butterworth highpass

filter with a cutoff frequency of 300 Hz. It has the
coefficients shown :

B=[0.97261389849984 - 1.94522779699969 0.97261389849984]
A=[1.0000000000000 -1.94447765776709 0.94597793623228]
Hs(z) is a second-order Butterworth lowpass

filter with a cutoff frequency of 3 kHz Its
coefficients are as shown:

B=[0.02995458220809 0.05990916441618 0.02995458220809)]
A=[1.0000000000000 -1.45424358625159 0.57406191508395]
H4(2) is a first-order Butterworth lowpass filter

with a cutoff frequency of 5 kHz. It has the
coefficients shown:

B=[0.25342728698435 0.25342728698435]
A=[1.00000000000000 -0.49314542603130]
The magnitude responses of these four filters are

shown in Fig. 41, and the resulting composite filter is
shown in Fg. 42.

DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute. 24



DRAFT. For information only. Article to be copyrighted/published. Do not copy/distribute.

dB
B
-

20 F

a5t ;

Hertz

Fig. 41. Origina Filters One Through Four
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Fig. 42. Composite Magnitude Response

All of these bundled together form the sixth-order
filter whose trandfer function is shown in Eq. (38).
To convert this to a cascade dructure, first the
trandfer function as a smplified ratio of polynomias
is sought. This process can be much smplified by
use of a symbolic manipulation program such as
Maple®.

Pugging in the generd formulae for firs- and
second-order filters, EqQ. (38) becomes

éBzo + 8212_1 + Bzzz_z

& L+ Az +A,Z?
BlO + Bllz-l Vngo + lez_l + Bazz_ ?
1+ A7 E1+AZ +A,Z7

eéB4O + B412-l

g 1+ A4lz-l

X

+
a.oooo oo oo

(39)

How to proceed from here differs somewhat due
to available tools, persond preferences, and desired
generdity of the solution. Obvioudy, the coefficients
could be subdtituted and Eqg. (39) smplified. Or,
especidly if uang a symbalic toal, this equation can
be smplified symbolicdly. This has the advantage
that the algebra does not have to be repeated every
time one of the origind filters changes.

It is dso worthwhile to notice that, if the orders
of the four filters will sometimes change, Eq. (39)
can be written with the highest possble orders,
amplified symbalicdly, and then when deriving the
find equation, subgtituting zeros for any unused
higher-order coefficients.

In addition, take note that H; is dready In
cascade form and can be implemented as such.
Therefore, the combination of H, through H, can be
smplified and reduced to two second-order sections
and one first-order section. These four total sections
(induding H;) can then be implemented using four
second-order  gtructures, or the two first-order
sections can be combined at that time for a three-
section implementation.  Additiondly, the entire
equation can be reduced to one smplified ratio of
polynomids, and then factored.

For purposes of this example, it is assumed that
filters will not change, 0 the coefficients can be
ubdtituted into Eq. 39 and the resulting equation
amplified. The resulting Sxth-order equation has this
form

-1 -6
_by+bz 4. +b;z

H
(Z) 1+a1z'1 +oot aGZ'S

(40)
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The coefficients are

B=[0.28108973410751 -0.90011731939953
0.80032820573604 0.31515805072053 -0.95880370670137
0.58495926867901 -0.12261423314218]

A=[1.00000000000000 -4.88144914536874
9.87517090253539 -10.59711698022950 6.35966205774405 -
2.02127862265964 0.26501273714634]

If a Sxth-order sructure is avalable, this filter
can be implemented as is to achieve the same
trandfer function as if implemented by the sructure
of Fg. 40.

To implement this in a cascade of second-order
filters, however, the process described in section 5.2
is used: the numerator polynomids are factored,
complex conjugate pole and zero pars ae
combined into second-order filter coefficients, and
any red poles and zeros may dso be combined.
This example has the following zeros:
-1.00000000000000
0.99999999999696
0.98594396121424 + 0.02327116735616i
0.98594396121424 - 0.02327116735616i
0.61517698021458 + 0.26465822467728i
0.61517698021458 - 0.26465822467728|

The poles are shown below:

0.98958247534274

0.49314542603125

0.97223882887180 + 0.02701103189400)

0.97223882887180 - 0.02701103189409i

0.72712179312558 + 0.21296904245800i

0.72712179312558 - 0.21296904245800I

Combining these poles and zeros, in the order

shown, and scding the numerator of the firgt filter
with the by coefficient of the the sixth-order filter

(0.28108973410751 for this example), the
following filter coefficients reauilt:

B=[0.28108973410751 0.00000000000085 -0.28108973410666]
A=[1.0000000000000 -1.48272790137399 0.48800807139595]

B=[1.00000000000000 -1.97188792242849 0.97262704188495]

A=[1.0000000000000 -1.94447765774359 0.94597793620998]
B=[1.00000000000000 -1.23035396042916 0.44848669287526]
A=[1.0000000000000 -1.45424358625116 0.57406191508364]
The magnitude responses of these threefilters are
shown in Fg. 43. The compodste magnitude

response achieved upon cascading these three filters
isidenticaly that of Fig. 42.

10 10° 10
Hertz

Fig. 43. Magnitude Responses of the Three Cascade
Filters

6 PLOTTING THE MAGNITUDE
RESPONSE OF SECOND-ORDER IIR
FILTERS

A second-order digitd filter has the transfer
function shown in Eq. (1). The magnitude response,
as a function of frequency, admits the following
functiond form:

_|p +be™ +be |
C|1+ae™ +ae™ |

|H W) =|H (2)

e (41)
where U = 26f/Fs, Fs = sampling frequency.

Typicaly the magnitude response will be plotted
on a log-frequency axis, so only a few hundred
frequency points need to be computed. The log
gpacing can be computed as follows:
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10g,4(F,)-10g,4( F;)

M =10 N-1 (42
Where F; is the beginning frequency point; F; is the
ending frequency point, and N is the desired number
of frequency points.

For example, to plot 300 points between 10 Hz
and 22050 Hz, a multiplier of

100;0(22050) - 10g;5(10)
M =10 299 =1.026082
is used resulting in frequency vaues of 10,
10.26082, 10.52844, 10.80304, 11.0848,
11.37391, ..., 19892.1, 20410.93, 20943.28,
21489.52, 22050.

Now, dl tha remains is to compute the
frequency values. Typicaly, these are plotted in dB,
0 the computation for the first point, assuming a
samplerate of 44.1 kHz isasfallows
H( 2p10

44100

20log,,

b +be_|T2§11_(c))0+b e'i%%o
0 1 2

20log,, ) —n —n

+ ale 44100+ aze 44100

(43)

Usng a math library that can ded with complex
exponentids, subgtitute the coefficients into Eq. (43),
compute the response for each of the frequency
points, and plot. If complex exponentias are not
available, the equation can be rewritten as follows.
This should be computable usng most math libraries:
IH (w)| :|b0 +b1§_ "t bz?_'zzw| -

|1+a1e 'W+a2e'W|

|b, + b, [cos(w) - i Sin(w)] +b, [cos(2w) - isin(2w)]|
| 1+ & [cos(w) - i Sn(w)] +a,[cos(2w) - i sSn(2w)] |
Note: if necessary the following definition can be
used after subgtituting in the various parameters and

samplifying:

la+ib|_ [a®+b?
lg+id| g +d?

(44)

(45)

Although Matlab® has a resident tool, the
FREQZ command, for deriving this information, this
paper includes a Matlab® function written so as to
not require that command. This function can be used
as pseudocode for implementations in languages
where filtering tools are not avalable. By way of
testing its functiondity, it can be used to plot any of
the second-order filters presented in this paper.

7  SUMMARY

This paper is meant as a companion to the digita
audio systems dedgner. It covers the information
needed to design and implement any |IR filter as a
cascade of second-order IIR filter sections. It
presents the equations needed to compute many
filters, and presents them in a straightforward formét,
usng familiar parameters, and without requiring
transformations to derive the actua coefficients for
implementation.
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APPENDIX - MATLAB® FUNCTIONS
(Electronic versons (*.m files) available from the
author.)

First-Order Allpass Filters

function [B, A] = FO_allpass(fc, Fs)
al pha = (tan(pi*fc/Fs) - 1) /
(tan(pi*fc/Fs) + 1);

B [al pha 1 0];

A =[1 al pha 0];

Second-Order Allpass Filters

function [B, A] = SO allpass(b, fc, Fs)
a = (tan(pi*b/Fs) - 1) / (tan(pi*b/Fs)
1);

-cos(2*pi *fc/ Fs);

[-a d*(1 - a) 1];

[1 d*(1 - &) -a];

>wa +
o n

Second-Order Equalization Filters

function [B, A] = SO EQ(g, b, fc, Fs)
if g<1
a = (tan(pi*b/Fs)-
9)/ (tan(pi*b/Fs)+g);
el se
a = (tan(pi*b/Fs)-
1)/ (tan(pi*b/Fs)+1);
end
H=g9 - 1;
d = -cos(2*pi *fcl/Fs);

bO =1 + (1+a)*H 2;
bl = d*(1-a);

al = b1,

b2 = -a-(1+a)*H 2;
a2 = -a;

B = [b0 bl b2];
A=1[1 al a?];

First-Order Butterworth Filters
function [B, A] = fo_butter(fc, Fs, HL)

we = 2*pi *fc;
k = 2*pi *fc/tan(pi *fc/Fs);
if HL(1:3) == "'low

b0 = we/ (k+we) ;

bl = we/ (k+we);

el se
b0
bl

k/ (k+wc) ;
-k/ (k+we) ;

end

al = (we-k)/ (k+we);
B = [b0O bl 0]

A =11 al 0]

Second-Order Butterworth Filters
function [B, A] = so_butter(fc, Fs, HL)

we = 2*pi*fc;
k = 2*pi*fc/tan(pi*fc/Fs);
if HL(1:3) == 'l ow
b0 = w2/ (wer2+k”2+sqrt (2) *we* k) ;
bl = 2*wc/r2/ (weh2+k"2+sqgrt (2) *we* k) ;
b2 = w2/ (we"r2+k”2+sqrt (2) *we* k) ;
el se
b0 = k~2/ (weh2+k"2+sqgrt (2) *we*k) ;
bl = -2*k"2/ (weh2+k"2+sqgrt (2) *we* k) ;
b2 = k~2/ (weh2+k"2+sqgrt (2) *we*k) ;
end

al = (2*wc"2-
2*k"2) I (weh2+k"N2+sqgrt (2) *we* k) ;

a2 = (wec"h2+k"2-
sgrt(2)*we*k)/ (we"r2+k”2+sqrt (2) *we*Kk) ;

B = [b0 bl b2];
A=1]1 al a?];

Third-Order Butterworth Filters
function [B, A] = to_butter(fc, Fs, HL)

we = 2*pi*fc;

k = 2*pi*fc/tan(pi*fc/Fs);

if HL(1:3) == 'l ow

bO=wc/3/ (wer3+kA3+2*weh 2% k+2*we* k" 2) ;
b1=3*wc/3/ (wer3+kA3+2*weh 2% k+2*we* k" 2) ;
b2=3*wc/3/ (wer3+kA3+2*weh 2% k+2*wer k" 2) ;
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b3=wc/3/ (wer3+k"3+2* wer 2 k+2* we* kh2) ;
el se

b0=k"3/ (WcAr3+k"3+2* WA 2* k+2* wer k" 2) ;
bl=-3*k"3/ (wcN3+k"3+2*wer2*¥ k+2*we* kM 2) ;
b2=3*Kk" 3/ (WcN3+k"A3+2* WA 2* K+2* wer kN 2) ;
b3=- k"3/ (wecN3+k"3+2*wer2* k+2* we* k”2) ;
end

al=(3*wc"3- 3*kr3+2*wecr2* k- 2* we* k”2)

[ (wer3+kA3+2*weh 2 k+2*we* kh2) ;
a2=(3*wcNr3+3*k"3- 2*wcr2* k- 2* we* k”2)

[ (wer3+kA3+2*weh 2 k+2*we* kh2) ;
a3=(wcN3- k"3- 2*weh2* k+2* wer kN 2)

[ (wer3+kA3+2*weh 2 k+2*we* kh2) ;

[bO bl b2 b3];

[1 al a2 a3];

B
A
Fourth-Order Butterworth Filters

function [B, A] = four_o_butter(fc, Fs,
HL)

we = 2*pi *fc;
a = 2*(cos(pi/8)+cos(3*pi/8));
b 2*(1+2*cos(pi/8)*cos(3*pi/8));
k 2*pi *fc/tan(pi*fc/Fs);
if HL(1:3) =="1low
b0 = wen4/ (kM4 + a*we*k"3 +
b*wc"2*k"2 + a*we”3*k + weh4);
bl = 4*we™4/ (k™4 + a*we*k"3 +
b*wc/h2*k”2 + a*we”3*k + weh4);
b2 = 6*wc™4/ (k"4 + a*we*k"3 +
b*wc/h2*k”2 + a*we”3*k + weh4);
b3 = 4*wc™4/ (k™4 + a*we*k"3 +
b*wc"2*k"2 + a*we”3*k + weh4);
b4 = wen4/ (kM4 + a*we*k"3 +
b*wc/h2*k”r2 + a*we”3*k + weh4);

el se
b0 = k"4/ (k"4 + a*wc*k"3 +
b*wc"2*k"2 + a*we”3*k + weh4);
bl = -4*k"4/ (k"4 + a*wc*k"3 +
b*wc"2*k"2 + a*we”3*k + weh4);
b2 = 6*k"4/ (k"4 + a*wc*k"3 +
b*wc/h2*k”r2 + a*we”r3*k + weh4);
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b3 = -4*k"4/ (k"4 + a*wec*k”"3 +
b*wc/r2*k”2 + a*we”3*k + weh4);

b4 = k™4/ (k™4 + a*we*k"3 +
b*wc/r2*k”2 + a*we”3*k + wen4);
end
al = (-4*k™4 - 2*a*wc*k”3 + 2*a*we”3*k
+ 4*wenr4)/ (kM4 + a*wer*k”3 + brweh2* kM2
+ a*we”3*k + wen4);
a2 = (6*k"4 - 2*b*wcn2*¥k”2 +
6*wen4)/ (kM4 + a*we*k"3 + b*weh2¥ kM2 +
a*we"r3*k + wen4);
a3 = (-4*k"4 + 2*a*wc*k”3 - 2*a*we”3*k
+ 4*wenr4)/ (kM4 + a*wer*k”3 + brweh2* kM2
+ a*we”3*k + wen4);
a4 = (k"4 - a*wc*k”3 + b*wen2*¥k”h2 -
a*we”3*k + wen4)/ (k"4 + a*we*k"3 +
b*wer2*k”2 + a*we”3*k + weh4);
B = [b0O bl b2 b3 b4];
A [1 al a2 a3 a4];

Second-Order Linkwitz-Riley Filters
function [B, Al = so_LR(fc, Fs, HL)

we = 2*pi*fc;
k = 2*pi*fc/tan(pi*fc/Fs);
if HL(1:3) == 'l ow
b0 = wen2/ (k*2+we/h2+2*we* k) ;
bl = 2*we”2/ (k" 2+wer2+2*we* k) ;
b2 = w2/ (k*M2+wer2+2*we* k) ;
el se
b0 = k~2/ (k"2+weh2+2*we* k) ;
bl = -2*k"2/ (k"2+weh2+2*we* k) ;
b2 = k~2/ (k"2+weh2+2*we* k) ;
end
al = (-2*k"2+2*we”2)/ (k" 2+weh2+2* we* k) ;

az2=( -
2*wer k+k”2+wenh2) / (kA 2+weh 2+2* wer k) ;

B = [b0 bl b2];
A=1]1 al a?];
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Fourth-Order Linkwitz-Riley Filters
function [B, Al = four_LR(fc, Fs, HL)

we = 2*pi*fc;
k = 2*pi*fc/tan(pi*fc/Fs);
if HL(1:3) == 'l ow

b0 = wen4/ (4*weh2*k"h2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer kN3+weh4)

bl = 4*wc™4/ (4*weh2* k" 2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer kN3+weh4)

b2 = 6*wcM4/ (4*weh2*kM2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer k" 3+weh4)

b3 = 4*wcM4/ (4*weh2*kM2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer kN3+weh4)

b4 = wer4/ (4*weh2*xk"h2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer k"3+weh4)
el se

b0 = k™4/ (4*weN2*k"2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer kN3+weh4)

bl = -4*Kk"M4/ (4*wech2*¥Kk"h2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer k"3+weh4)

b2 = 6*k"4/ (4*wch2*k"2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer k" 3+weh4)

b3 = -4*Kk"N4/ (4*weh2*¥k"h2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer k" 3+weh4)

b4 = k™4 (4*weh2*KkN2+2*sqrt (2) *
wer3* k+kM4+2*sqrt (2) *wer kN3+weh4)
end
al = (4*weh4+4*sqrt (2) *wer3* k- 4* k" 4-
A*sqrt (2) *we*k"3)/ (4*wenr2*¥k"N2+2*sqrt (2)
*wer 3 k+kM4+2*sqrt (2) *we*kh3+weh4) ;
a2 = (6*wch4-8*weh2*kr2+6*kN4) [ (4*weh2*
krn2+2*sqrt (2) *wer3*k+k"r4+2*sqrt (2) *we*k
A3+weh4) ;
a3 = (-
4*sqrt(2) *wer3*k+4*wer4+4*sqrt (2) *
we* k” 3-
4* k" 4) [ (A*weh2* kM 2+2* sqrt (2) *weN3*

k+kr4+2*sqrt (2) *we*k”r3+weh4) ;

a4 = (kM4-2*sqrt(2)*wer3*k+wen4-
2*sqrt(2)*

we* kA 3+4*weh2*kn2) [ (4*weh2*kr2+2%sqrt (2
) *weA3*k+kM4+2*sqgrt (2) *we*kr3+wen4) ;

B = [b0 bl b2 b3 b4];

A =11 al a2 a3 a4];

First-order Shelf

function [B, A] = fo_shelf(g, fc, Fs,
bass)

if g>1

a = (tan(pi*fc/Fs) -
1)/ (tan(pi*fc/Fs) + 1);

i f bass
bO =1+ (1 + a)*(g-1)/2
bl =a+ (1 + a)*(g-1)/2;
el se
b0 =1+ (1 - a)*(g-1)/2
bl =a+ (a- 1)*(g-1)/2
end
el se
i f bass

a = (tan(pi*fc/Fs) -
g)/(tan(pi*fc/Fs) + qg);

bO =1+ (1 + a)*(g-1)/2;
bl =a+ (1 + a)*(g-1)/2;
el se

a=(g*tan(pi*fc/Fs)-
)/ (g*tan(pi*fc/Fs) + 1);

bO =1+ (1 - a)*(g-1)/2;
bl =a+ (a- 1)*(g-1)/2;

end
end
B = [b0 bl 0];
A=1[1a 0];

Second-order Shelf
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function [B, A] = so_shelf(fc, Fs, g,
bass)

s = sqrt(2)/2;

rho = pil2;

phi = (fc/Fs)*pi

if g>05=&g«<?2

F = sart(g);
elseif g >1

F =9/ sqrt(2);
el se

F=9g* sqrt(2);
end

gd = ((F*2 - 1)/(g*2 - FA2))70. 25;

gn = sqrt(g) * gd;
a = tan(pi*(fc/Fs - 1/4));

i f bass

bO = -(-1-gn*2*an2-an2-2*gn~2*a-
gnh2-2*s*gn+2*s*gn*anr2+2*a)/ (2*s*gd+1-
2*s*gd*anr2+gdr2*ar2+2*gdN2* a+at2+gdn2-
2*a);

bl = -(2-4*a-4*gn"2*a- 2*gn"2*a’2-
2*gnh2+2*anr2)/ (2*s*gd+1-
2*s*gd*anr2+gdr2*ar2+2*gdN2* a+at2+gdn2-
2*a);

b2 = (1+2*s*gn*an2- 2*a+gn”2-
2*s*gn+2*gn”f2*at+atr2+gn”2*anr2)/ (2*s*gd+1
-2*s*gd*anr2+gdn2*an2+2* gdn2* a+anr2+gdh 2-
2*a);

a0 = 1;

al = (-2+2*gd"2*an2+4*gd"2*a-
2*an2+2*gd"h2+4*a)/ (2*s*gd+1-
2*s*gd*anr2+gdr2*ar2+2*gdN2* a+ar2+gdn2-
2*a);

a2 = (gdr2*anr2-2*a+l+2*gdr2*a-
2*s*gd+anr2+2*s*gd*ar2+gd"2)/ (2*s*gd+1-
2*s*gd*anr2+gdr2*ar2+2*gdN2*a+ar2+gdn2-
2*a);

el se

b0 = (gn*2*an2+2*s*gn-2*gn"2*a+1-
2*s*gn*at2+anr2+gn®2+2*a)/ (1+gd~2+2*s*gd
-2*s*gd*ar2+gdn2*an2- 2*gdr2*at+anr2+2*a) ;

bl = (2-2*gn*"2*an2+4*gn~2*a+4*a-
2*gn"2+2*an2)/ (1+gd*2+2* s*gd-
2*s*gd*an2+gdr2*an2- 2*gdh2*a+ar2+2*a) ;

b2 = (1+2*s*gn*a”2-
2*s*gn+2*a+a”2+gn”2-
2*gnt2*a+gn~2*ar2)/ (1+gdr2+2*s*gd-
2*s*gd*an2+gdr2*ar2- 2*gdh2*a+ar2+2*a) ;

a0 = 1,

al = (2-2*gd"2*an2+4*gdr2*a+2*a’2-
2*gd”2+4*a)/ (1+gdr2+2* s*gd-
2*s*gd*an2+gdr2*ar2- 2*gdh2*a+at2+2*a) ;

a2 = (1-2*gd"2*a+2*a+gd” 2-
2*s*gd+anr2+gdr2*ar2+2*s*gd*ar2)/ (1+gd”2
+2*s*gd- 2*s*gd*an2+gd~2* at2-
2*gdn2*a+anr2+2*a);
end

B
A

[bO bl b2];
[a0 al a?];

Magnitude Plotting

function filt_plot(B, A beg freq,
end_freq, numpts, Fs)

b0 = B(1);
bl = B(2);
b2 = B(3);
al = A(2);
a2 = A(3);

F(1) = beg_freq;

%i rst magnti due point

H(1) =

20*1 0g10( abs((bO+b1*(cos(2*pi *F(1)/Fs) -
i *sin(2*pi *F(1)/Fs))+b2*(cos(4*pi *F(1)/
Fs) -

i *sin(4*pi *F(1)/Fs)))/ (1+al*(cos(2*pi *F
(1)/Fs)-

i *sin(2*pi *F(1)/Fs))+a2*(cos(4*pi *F(1)/
Fs)-i*sin(4*pi *F(1)/Fs)))));

%-r equency nultiplier
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M= 107((l 0ogl0(end_freq)-
| 0g10(beg_freq))/(numpts-1));

for j = 2:numpts

%Jpdat e frequency

F(j) = F(j-1)*M

%vagni t ude points

H(j) =
20*1 0g10(abs((b0O+bl1*(cos(2*pi *F(j)/Fs) -
i *sin(2*pi *F(j)/Fs)) +b2*(cos(4*pi *F(j)/
Fs) -
i*sin(4*pi *F(j)/Fs)))/ (1l+al*(cos(2*pi *F

(j)/Fs)-
i *sin(2*pi *F(j)/Fs))+a2*(cos(4*pi *F(j)/
Fs)-i*sin(4*pi*F(j)/Fs)))));

end

%l ot on | og-frequency axis
sem | ogx(F, H)
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